109. Control of Diels-Alder Addition, Stereo- and Regioselectivity by Remote Substituents and Tricarbonyl(diene)iron Moieties')

by Jean-Christophe Z wick ${ }^{2}$) and Pierre Vogel ${ }^{*}$
Institut de chimie organique de l'Université, 2, rue de la Barre, CH - 1005 Lausanne
and Vladimir Mange and Gervais Chapuis
Institut de cristallographie de l'Université de Lausanne, Bâtiment des Sciences Physiques, CH-1005 Lausanne

(25.II.87)

Abstract

A stereoselective synthesis of tricarbonyl-[(1RS,2RS,4RS,5RS,6SR)-C-5,6,C- $\boldsymbol{\eta}-(5,6,7,8$-tetramethylidenebi-cyclo[2.2.2]octan-2-ol)]iron (11) and of its tosylate $\mathbf{1 2}$ and benzoate $\mathbf{1 3}$ is reported. The bulk of the 'endo'- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety and of the ester groups in 13 renders its Diels-Alder additions to methyl propynoate (15), butynone (16), and 1 -cyanovinyl acetate highly 'para' regioselective. The cycloadditions of diene-alcohol $\mathbf{1 1}$ are either 'meta'- or 'para'-regioselective depending on the nature of the dienophile. In the presence of $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$, the addition of $\mathbf{1 1}$ to methyl vinyl ketone is highly stereo- (Alder mode) and 'para'-regioselective, giving adduct 52 (tricarbonyl[$(1 R S, 4 R S, 8 R S, 9 S R, 10 R S, 12 R S)$-C, $9,10, C-\eta$-(12-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 $\left.0^{2,7}\right]$ dodec-2(7)-en-4yl methyl ketone)]iron) whose structure has been established by single-crystal X-ray crystallography.

Introduction. - The Diels-Alder additions of tetraenol $\mathbf{1}$ and tetraenone $\mathbf{2}$ were found to be little stereo- and regioselective, giving mixtures of mono- and bis-adducts when 1 mol-equiv. of dienophile was used for the reaction [1]. The corresponding 'endo, syn'-tricarbonyliron monocomplexes $\mathbf{3}$ and $\mathbf{4}$ could be prepared readily, thus allowing one to obtain pure mono-adducts of the corresponding tetraenes. Unfortunately, the regioselectivity was very poor for the cycloadditions of 3 . In the case of 4 , it was a little better, e.g. the addition of methyl propynoate to $\mathbf{4}$ gave a $3: 1$ mixture of the corresponding 'para'/ 'meta' adducts [1].

1

2

3

7

[^0]Coordination of a diene with a tricarbonyliron group can perturb significantly the chemical properties of a conjugated [2] [3] or homoconjugated function [4] [5]. For instance, the tricarbonyl (o-xylylene) iron complex 5 does not react with ethylenetetracarbonitrile to give the expected adduct 7. The iron complex of the exocyclic diene moiety confers some aromatic character to the conjugated endocyclic diene function. This property can be interpreted in terms of the limiting structures $\mathbf{5} \leftrightarrow \mathbf{6}$. A Fe(CO$)_{3}$ group may also influence the reactivity of a remote function because of its inductive and polarizability effects [4b] [5] or/and because of its bulk (steric effect) [6]. Such an effect was invoked to interprete the lack of Diels-Alder reactivity of the doubly complexed [2.2.2]hericene derivative $\mathbf{8}($ e.g. $\boldsymbol{\rightarrow 9})$ [7]. We thus predicted that monocomplexation of $\mathbf{1}$ by a $\mathrm{Fe}(\mathrm{CO})_{3}$ group onto the 'endo' face of the diene moiety 'anti' with respect to the OH function should force the attack of a dienophile onto the 'exo' face of the uncomplexed diene unit, 'syn' with respect to the OH group. Under these circumstances, the OH group or its esters should be able to control the stereo- and regioselectivity of the Diels-Alder additions of non-symmetrical dienophiles. We report on the synthesis of such complexes (11-13) and shall show that the above concept can lead to good selectivities for the cycloadditions. Furthermore, we have found that the regioselectivity depends on the nature of the substituents at $\mathrm{C}(2)$ in the 5,6,7,8-tetramethylidenebicyclo[2.2.2]oct-2-yl derivatives and on that of the dienophile.

9

Results. - Oxidation of the doubly complexed tetraenol 10 with $\mathrm{Me}_{3} \mathrm{NO}$ in acetone removed selectively the 'exo'- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety, giving the 'endo'-monocomplexed tetraenol 3 [1]. Collins' oxidation of alcohol 3 into the corresponding ketone $\mathbf{4}$ has already been reported [1]. We have found that the Corey and Kim's method [8] using N-chlorosuccinimide (NCS) and dimethylsulfide gave a better yield of $4(65 \%)$ and was easier to scale up. Although it has been reported that desulfurization can be carried out with $\mathrm{Fe}(\mathrm{CO})_{5}$ [9], we did not observe any products resulting from the decomplexation of $\mathbf{3}$ or $\mathbf{4}$ under these conditions.

[^1]give products of $S_{\mathrm{N}} 2$ displacement. Instead, products of homoallylic rearrangement, giving the corresponding bicyclo[3.2.1]oct-2-yl derivatives were observed [5c]. For instance, the reaction of diethyl azodicarboxylate and benzoic acid with the triphenyiphosphine complex of alcohol 3 led to the rearranged benzoate 14 ; no trace of any other isomeric product could be detected, thus indicating the facile heterolysis of the $\mathrm{C}-\mathrm{O}$ bond in the phosphorus complex of 3 ($S_{\mathrm{N}} 1$ process with homoconjugative participation by the uncoordinated s-cis-butadiene moiety) [5c].

The base-catalyzed H / D exchange of $\mathrm{H}-\mathrm{C}(3)$ in the 'endo'- $\mathrm{Fe}(\mathrm{CO})_{3}$-monocomplexed 4 was found to be highly stereoselective [14]. The addition of MeMgI to 4 was only slightly stereoselective, the nucleophile preferring (2:1) the face of the ketone 'syn' with respect to the diene- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety [14]. We found that the hydride reductions of 4 can also be stereoselective. For instance, when using $\mathrm{LiBH}(\mathrm{Et})_{3}$ in anh. THF $\left(-78^{\circ}\right)$, the desired alcohol 11 was isolated in 88% yield. In this case, the 'syn' vs. 'anti' facial selectivity for the hydride attack onto the ketone function was ca. 21:1 [5a]. The origin of these selectivities is not established yet [15]. The tosylate $\mathbf{1 2}$ and benzoate 13 were derived from alcohol 11 using standard methods (see Exper. Part).

The structure of 11 was deduced from its mode of formation, its elemental analysis, and its spectral data. In particular, the relative configuration of the alcohol at $\mathrm{C}(2)$ was established by $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ and lanthanide-induced shifts (see Exper. Part) and by comparison with data obtained for 3 . The structures of $\mathbf{4}[15]$ and $\mathbf{1 0}[16]$ had been established unambiguously by X-ray diffraction studies.

The Diels-Alder additions of 12 to methyl 2-propynoate (15), and of 11 and 13 to 15 , 3-butyn-2-one (16), 2,3-didehydroanisole (17), 1-cyanovinyl acetate (CVA) and methyl vinyl ketone (MVK) have been carried out. Our results (see adducts and their dehydrogenation products 18-55) are summarized in Table 1 and compared with those (see 57-60) obtained for the cycloadditions of 15 to the 'exo' $-\mathrm{Fe}(\mathrm{CO})_{3}$ monocomplex 56 which was prepared by benzoylation of the corresponding alcohol 61.

The alcohol 61 was obtained by oxidation of the dinuclear complex 10 with o-chloranil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing AcONa and silica gel (20°, ultra-sounds). Thus, we have demonstrated the high versatility of the dicomplex 10 since, depending on the nature of the oxidant, either the 'exo' $-\mathrm{Fe}(\mathrm{CO})_{3}$ (with $\mathrm{Me}_{3} \mathrm{NO}$) or the 'endo'- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety (with o-chloranil) can be removed selectively.

The adduct mixtures obtained for the reactions with the acetylenic dienophiles 15-17 were not very stable and contained significant amounts of the corresponding aromatized derivatives. On treatment of these mixtures with $\operatorname{DDQ}(=4,5$-dichloro- 3,6 -dioxo-1, 4-cy-clohexadiene-1,2-dicarbonitrile) in benzene at $60-80^{\circ}$, oxidation was complete, and mixtures of the corresponding aromatized adducts were isolated in good yield (see Table 1). The product ratios (regioselectivities) were determined by $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of the latter mixtures. In the case of reactions $12+15,13+15$, and $13+16$, the corresponding major products $\mathbf{2 8}, \mathbf{3 2}$, and $\mathbf{3 6}$, respectively, were isolated pure by simple crystallization. The structures of the aromatized cyclo-adducts were deduced from their spectral data, and more specifically from their $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with the help of nuclear Overhauser effect (NOE) measurements.

Table 1 (cont.)

[^2]

Fig. 1. Nuclear Overhauser effect (NOE) measurements in the $360-M H z{ }^{i} H-N M R\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ}\right)$ of 32 (IUPAC numbering shown); a) irradiation of $\mathrm{H}-\mathrm{C}(1)(3.23 \mathrm{ppm}) ; b)$ irradiation of $\mathrm{H}-\mathrm{C}(8)(3.82 \mathrm{ppm})$; c) without irradiation. Spectra a) and b / were obtained by substracting the spectrum c) from the irradiated spectra.

An illustrative example is shown in Fig. I for 32. The signals attributed to the bridgehead protons $\mathrm{H}-\mathrm{C}(1)$ (3.23 ppm, $\left.t,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{CH}_{2}(10)\right)=2.5 \mathrm{~Hz}\right)$ and $\mathrm{H}-\mathrm{C}(8)\left(3.82 \mathrm{ppm}, d,{ }^{3} J(\mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9))=3.0 \mathrm{~Hz}\right)$ are identified unambiguously from their multiplicity. Irradiation of $\mathrm{H}-\mathrm{C}(1)$ led to the observation of significant NOE's at $7.98 \mathrm{ppm}\left(d\right.$ attributed to $\mathrm{H}-\mathrm{C}(3)$, vicinal to the ester group, $\left.{ }^{4} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5))=1.5 \mathrm{~Hz}\right)$ and $1.62 \mathrm{ppm}(d$ attributed to $H-\mathrm{CH}=\mathrm{C}(11)$ trans to $\left.\mathrm{C}(12),{ }^{2} J=2.5 \mathrm{~Hz}\right)$: Irradiation of $\mathrm{H}-\mathrm{C}(8)$ led to the observation of NOE's at $6.90 \mathrm{ppm}\left(d,{ }^{3} J=7.5 \mathrm{~Hz}\right)$ attributed to $\mathrm{H}-\mathrm{C}(6)$ and at $1.67 \mathrm{ppm}\left(d,{ }^{3} J=2.5 \mathrm{~Hz}\right)$ attributed to $H-\mathrm{CH}=\mathrm{C}(12)$ trans to C(11). Similar NOE measurements were made on the ${ }^{1} \mathrm{H}$-NMR spectra of mixtures 20/21, 24/25, 28/29, 32/33, and $\mathbf{3 6} / 37$, allowing one to establish the relative configurations of these compounds unambiguously.

In the case of the 5-methoxy-1,4-ethanoanthracenol 41, irradiation of the signals attributed to the bridgehead protons $\mathrm{H}-\mathrm{C}(1)(3.33 \mathrm{ppm}, t, J=3.0 \mathrm{~Hz})$ and $\mathrm{H}-\mathrm{C}(4)(3.58, d, J=3.0 \mathrm{~Hz})$ allowed one to identify the signats attributed to the proximal protons $\mathrm{H}-\mathrm{C}(9)(7.36 \mathrm{ppm}, s)$ and $\mathrm{H}-\mathrm{C}(10)(8.34 \mathrm{ppm}, s)$ respectively (NOE measurements). Irradiation of the latter signals allowed one to establish their proximity with $\mathrm{H}-\mathrm{C}(8)(7.40 \mathrm{ppm}, d, J=8.0$ Hz) and the MeO group ($3.44 \mathrm{ppm}, s$), respectively. The structure of $\mathbf{4 5}$ was determined in a similar way.

The reaction of diene-benzoate 13 with CVA under thermal conditions $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ}\right)$ gave a $78: 22$ mixture of adducts $\mathbf{4 6}$ and $\mathbf{4 7}$ which were separated by chromatography on silica gel. The relative configuration at $\mathrm{C}(4)$ bearing the CN and AcO substituents could not be determined in these adducts. Nevertheless, their $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra together with NOE measurements allowed one to show that both products 46 and 47 resulted from the same 'para' regiochemistry. In contrast with the good 'para' regioselectivities observed for the Diels-Alder additions of 13 to methyl 2-propynoate (15), butynone 16 and CVA, the reaction of 13 with MVK under thermal conditions ($\mathrm{C}_{6} \mathrm{H}_{6}, 60^{\circ}$) was slightly 'meta'-regioselective, giving a 13:24:5:58 mixture of adducts 48/49/50/51 ${ }^{3}$). When MVK or 13 was precomplexed with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ [17], the cycloaddition $\left(-78^{\circ}\right)$ was not much more selective, leading to a 15:12:5:68 mixture of 48/49/50/51 (Table 1).

The thermal cycloaddition of MVK to the diene-alcohol $11\left(\mathrm{C}_{6} \mathrm{H}_{6}, 60^{\circ}, 4 \mathrm{~h}\right)$ gave a mixture of adducts from which the alcohols $\mathbf{5 2}$ and $\mathbf{5 4}(\text { or } \mathbf{5 5})^{3}$) were isolated pure in 68 and 20% yield, respectively. When 11 was precomplexed with 5 mol-cquiv. of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78°, the cycloaddition of MVK ($-78^{\circ}, 90 \mathrm{~min}$) gave a unique compound, the 'para' adduct 52, in 91% isolated yield. In this case, the stereo- and regioselectivity of Diels-Alder addition has been dramatically improved by the Lewis-acid
catalyst [18], in contrast with the cycloaddition of MVK to 13. It is interesting to note that the reaction of 3-butyn-2-one (16) with the diene-alcohol 11 precomplexed with 5 equiv. of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2},-55^{\circ}, 50 \mathrm{~h}\right)$ gave a $1: 1$ mixture of adducts $\mathbf{2 4} / \mathbf{2 5}(82 \%$ isolated yield), i.e. a lower regioselectivity than under thermal conditions (see Table 1). The same result was obtained when 16 was first precomplexed with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.

Fig. 2. Perspective view of the molecular structure of 52. ORTEP program [29]; for reason of ciarity, the H -atoms are not shown, except for $\mathrm{H}-\mathrm{C}(15)$; the atom numbering does not correspond to the IUPAC numbering; atoms are reproduced with 50% thermal ellipsoids.

The structure of adduct 52 was established by X-ray-diffraction studies (see Exper. Part and Fig. 2). Benzoylation of 52 (PhCOCl, pyridine, 0°) gave 48. Base-catalyzed isomerization of $52\left(\mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}, 20^{\circ}, 2 \mathrm{~h}\right)$ gave a mixture $52 / 53$ which was separated by chromatography on silica gel. Benzoylation of 53 gave 49. These experiments established the structure of $\mathbf{4 8}, \mathbf{4 9}$, and $\mathbf{5 3}$. The 'meta' regiochemistry of adducts $\mathbf{5 0 , 5 1 , 5 4}$, and 55 was also established. However, the configuration ('exo' vs. 'endo') at $\mathrm{C}(4)$ bearing the Ac group is arbitrary and could not be determined unambiguously.

Discussion. - The cycloadditions $12+15,13+15,13+16$, and $13+$ CVA were all highly 'para'-regioselective, in agreement with the hypothesis that the bulk of the 'endo'$\mathrm{Fe}(\mathrm{CO})_{3}$ moiety and of the ester groups induce 'para'-regioselective attacks of the dienophiles onto the face of the uncoordinated diene moieties 'syn' with respect to $C(2)$ of the tetramethylidenebicyclo[2.2.2]oct-2-yl esters. The two faces of the uncoordinated diene unit in the 'exo'- $\mathrm{Fe}(\mathrm{CO})_{3}$ monocomplex 56 are equally accessible to the dienophiles. Addition onto the face 'anti' with respect to the benzoate group is not expected to be regioselective, thus explaining the relatively weak 'para' regioselectivity observed for the cycloaddition $\mathbf{5 6}+\mathbf{1 5}$. This result confirms also the hypothesis of steric effects forcing the 'para' regioselectivity in the reactions $12+\mathbf{1 5}, 13+\mathbf{1 5}, 13+16$ and $\mathbf{1 3}+$ CVA.

The weak 'meta' regioselectivity observed for the addition of MVK to diene-benzoate 13 could be explained in terms of favorable dipole-dipole interactions between the dienophile and $\mathbf{1 3}$ (see Fig.3). This hypothesis is consistent with the fact that the cycloaddition of $\mathbf{1 3}$ to MVK was also 'meta'-selective in the presence of an excess of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.

Fig. 3. Dipole-dipole interaction between $M K V$ and 13

Fig. 4. Steric repulsion between $B F_{3}$-complexed 11 and MVK

This interpretation could be retained for both Alder and anti-Alder (Fig.3) mode of addition ${ }^{3}$).

The 'meta' regioselectivities observed for the Diels-Alder additions of the diene-alcohol 11 to methyl 2-propynoate (15) and 3-butyn-2-one (16) can be explained by invoking the formation of an H -bond between the carbonyl group of the acetylenic dienophiles and the alcoholic function of 11. This type of interaction had been proposed earlier to explain the 'meta' regioselectivity of the cycloaddition of $\mathbf{1 5}$ to 5,6 -dimethylidene-bicyclo[2.2.1]heptan-2-endo-ol (62) [20]. In the latter reaction, one implies the endo face of the diene moiety to be favored for the dienophile attack, a property which has been demonstrated for deuterium-substituted s-cis-butadienes grafted onto bicyclo[2.2.1]heptane skeletons [21]. In contrast, and as for the cycloadditions $\mathbf{1 2}+\mathbf{1 5}, \mathbf{1 3}+\mathbf{1 5}$, $13+16$, and $13+$ CVA, the Diels-Alder additions of 15 to the acetate 63 and brosylate 64 were 'para'-regioselective, consistent with an endo-face attack of the diene which is perturbed by the bulk of the endo substituent at $\mathrm{C}(2)$.

The 'para' regioselectivity of the Diels-Alder addition of $\mathbf{1 1}$ to MVK under thermal conditions is not easily explained. The very high 'para' regioselectivity and stereoselectivity (Alder mode of addition giving exclusively adduct 52) observed under the $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-$ catalyzed conditions can be attributed to steric repulsive effects between the BF_{3}-complexed alcohol 11 and dienophile, as shown in Fig.4. Double coordination of BF_{3} by $\mathbf{5 2}$ and MVK is also possible [22].

We do not have any satisfying interpretation to offer for the 'cis' regioselectivity of the additions of 2,3-didehydroanisole (17) to both diene-alcohol 11 and diene-benzoate 13. We did not expect any significant differentiation of the modes of attack 'cis' $v s$ s. 'trans'due to steric effects. It is not excluded yet that the regioselectivity observed is the expression of the geometry of precomplexes between the dienes and the precursor of the dienophile, i.e. 2-diazonio-3-methoxybenzene-1-carboxylate, rather than the translation of an electronic or steric effect. It is interesting to recall here that $\mathbf{1 7}$ has already been found to add to dienes substituted at $\mathrm{C}(1)$ with arylthio groups with high 'cis' regioselectivity [23].

[^3]Conclusion. - Stereoselective syntheses of tricarbonyliron monocomplexes of 5,6,7,8-tetramethylidenebicyclo[2.2.2]oct-2-yl derivatives have been presented. In the case of complexes 11-13, the bulk of the 'endo'- $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety forces the Diels-Alder addition of the uncomplexed diene unit to occur onto the face 'syn' with respect to the substituents at $\mathrm{C}(2)$. The bulk of the ester groups of $\mathbf{1 2}$ and $\mathbf{1 3}$ renders the 'para' mode of addition favored for acetylenic dienophiles such as methyl 2-propynoate (15) and 3-butyn-2-one (16) and for 1,1-disubstituted olefinic dienophiles such as 1-cyanovinyl acetate (CVA). The cycloadditions of methyl vinyl ketone (MVK) and 2,3-dihydroanisole (17) are slightly 'meta' regioselective. The use of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ catalyst did not improve the selectivity of the Diels-Alder additions of diene-benzoate 13 to MVK. In contrast with the reactions of the diene-ester 12 and 13, the diene-alcohol 11 added to acetylenic dienophiles with 'meta' regioselectivity. The cycloaddition of $\mathbf{1 1}$ to MVK was slightly 'para'-regioselective. In the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, however, the reaction was completely stereo- (Alder mode of addition) and 'para'-regioselective. The possibility to control the stereo- and regioselectivity of Diels-Alder additions by remote substituents and $\mathrm{Fe}(\mathrm{CO})_{3}$ moieties makes complexes 11-13 potential synthetic intermediates for the preparation of polyfunctional, linearly condensed six-membered ring systems. This potentiality is certainly enhanced by the fact that $\mathbf{1 1} \mathbf{- 1 3}$ can be obtained as optically pure materials [14].

We thank F. Hoffmann-La Roche \& Co. AG, Basel, the Swiss National Science Foundation, and the Fonds Herbette, Lausanne, for generous support.

Experimental Part

General. See [24].

Tricarbonyl/($1 \mathrm{RS}, 4 \mathrm{RS}, 5 \mathrm{RS}, 6 \mathrm{SR}$)-C,5,6, C- $\boldsymbol{\eta}$-(5,6,7,8-tetramethylidenebicyclo/2.2.2]octan-2-one) Jiron (4). $\mathrm{Me}_{2} \mathrm{~S}(3 \mathrm{ml}, 2.54 \mathrm{~g}, 41 \mathrm{mmol})$ was added slowly to a soln. of N-chlorosuccinimide $(4.11 \mathrm{~g}, 30.8 \mathrm{mmol})$ in anh. toluene (100 ml) at 0° within 15 min until appearance of a precipitate. A soln. of alcohol $\mathbf{3}[1](334 \mathrm{mg}, 1.06 \mathrm{mmol})$ in anh. toluene (10 ml) was added dropwise under stirring at 0°. After the addition of $\mathrm{Et}_{3} \mathrm{~N}(4.5 \mathrm{ml})$ in anh. toluene $(10 \mathrm{ml})$, the mixture was stirred for 10 more $\mathrm{min} . \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added, the soln. washed with $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{ml}$, twice), sat. aq. NaNCO 3 soln. ($80 \mathrm{ml}, 3$ times), and $\mathrm{H}_{2} \mathrm{O}\left(80 \mathrm{ml}, 3\right.$ times), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The crude 4 was filtered through a short column of silica gel ($10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yielding $224 \mathrm{mg}(68 \%)$ of yellow crystals [I].

Tricarbonyl [($1 \mathrm{RS}, 2 \mathrm{RS}, 4 \mathrm{RS}, 5 \mathrm{RS}, 6 \mathrm{SR}) \cdot \mathrm{C}, 5,6, \mathrm{C}-\eta-(5,6,7,8$-tetramethylidenebicyclo [2.2.2]o(tan-2-ol)] iron (11). Complex 4 ($113 \mathrm{mg}, 0.362 \mathrm{mmol}$) was added to $1 \mathrm{~m} \mathrm{LiBH}(\mathrm{Et})_{3}$ in $\mathrm{THF}(6 \mathrm{ml})$ stirred at -78°. After 5 h at -78°, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 1: 1(20 \mathrm{ml})$ was added and the mixture allowed to warm to 20°. After the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{ml}, 3$ times), the combined org. extract washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml}$), and the combined aq. phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The combined org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue filtered through a short column of silica gel ($10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave $99 \mathrm{mg}(88 \%)$ of yellow crystals. M.p. $151.5-152^{\circ}$. UV ($95 \% \mathrm{EtOH}$): 215 (sh, 19400), 282 (sh, 2200). IR (KBr): 3460 (br.), $3010,2970,2940,2900,2870,2050 s, 2000 s, 1970 s, 1630,1060,1040,900,635,615{ }^{1}{ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}$ (360 MHz , CDCl_{3}, [LIS by Eu(thd) $\left.\left.)_{3}\right]\right): 5.5(s,[19.7], H-\mathrm{CH}=\mathrm{C}(7)$ cis to $\mathrm{C}(8)) ; 5.28$ ($s,[16.1], H-\mathrm{CH}=\mathrm{C}(8)$ cis to $\left.\mathrm{C}(7)\right) ; 4.93$ (s, [25.0], $H-\mathrm{CH}=\mathrm{C}(7)$ trans to $\mathrm{C}(8)) ; 4.82(s,[15.2], H-\mathrm{CH}=\mathrm{C}(8)$ trans to $\mathrm{C}(7)) ; 4.35(m, J=9.0,3.0,2.5,[100]$, $\mathrm{H}-\mathrm{C}(2)) ; 3.25(d, J=3.0,[53.8], \mathrm{H}-\mathrm{C}(1)) ; 3.18(t, J=3.0,[21.3], \mathrm{H}-\mathrm{C}(4)) ; 2.49(m, J=13.0,9.0,3.0,[36.2]$, $\mathrm{H}-\mathrm{C}(3)$ 'anti' to OH$) ; 1.80(d, J=2.5,[9.4]$ and $[10.4], H-\mathrm{CH}=\mathrm{C}(5)$ trans to $\mathrm{C}(6)$ and $H-\mathrm{CH}=\mathrm{C}(6)$ trans to $\mathrm{C}(5)$, resp.); $1.71(m, J=13.0,3.0,2.5,[68.0], \mathrm{H}-\mathrm{C}(3)$ 'syn' to OH$) ; 0.25,0.20(2 d, J=2.5,[8.5]$ and $[9.0], H-\mathrm{CH}=\mathrm{C}(5)$ cis to $\mathrm{C}(6)$ and $H-\mathrm{CH}=\mathrm{C}(6)$ cis to $\mathrm{C}(5)$, resp.). MS (70 eV): $314\left(1, M^{+\cdot}\right), 286(23), 158(60), 230(100), 212(9), 210$ (6), 208 (3), 156 (18), 141 (11). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FeO}_{4}$ (314.127): C 57.36, H 4.49; found: C 57.52, H 4.47.

Tricarbonyl/(1 RS, 2 RS, 4 RS, $5 \mathrm{RS}, 6 \mathrm{SR}$)-C,5,6, $\mathrm{C}-\eta$-(5,6,7,8-tetramethylidenebicyclo/2.2.2]oct-2-yl p -toluenesulfonate)]iron (12). A mixture of $11(290 \mathrm{mg}, 0.92 \mathrm{mmol})$, pyridine (4 ml), and $\mathrm{TsCl}(0.5 \mathrm{~g}, 2.64 \mathrm{mmol})$ was stirred
at 20° for 24 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$, the soln. was washed successively with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml}), 1 \mathrm{~N} \mathrm{HCl}(50$ $\mathrm{ml}, 3$ times $), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, aq. sat. NaHCO_{3} soln. (50 ml), and $\mathrm{H}_{2} \mathrm{O}\left(50 \mathrm{ml}\right.$, twice), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue filtered through a short column of Florisil ($10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25° gave $320 \mathrm{mg}(75 \%)$ of yellow crystals. M.p. $121-122^{\circ}$. UV ($95 \% \mathrm{EtOH}$): $201(40000), 223(33500)$, 252 (sh, 10700), 296 (3750). IR (KBr): 3090, 3060, 3000, 2960, 2060, 1965, 1355, 1190, 1175, 1100, 1030, 930, 890, 825, 640. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.83,7.37(2 d t, J=8.0,1.5,4 \operatorname{arom} . \mathrm{H}) ; 5.42 .5 .25(2 s, 2 \mathrm{H}) ; 5.06(d t, J=9.5,3.0$, $\mathrm{H}-\mathrm{C}(2)) ; 4.82,4.79(2 s, 2 \mathrm{H}) ; 3.40(d, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 3.14(t, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 2.47\left(s, \mathrm{CH}_{3}\right) ; 2.39$ (ddd, $J=14.0,9.5,3.0, \mathrm{H}-\mathrm{C}(3)$ 'anti' to TsO$) ; 1.94(d t, J=14.0,3.0, \mathrm{H}-\mathrm{C}(3)$ 'syn'to TsO$) ; 1.80,1.78(2 d, J=2.5,2 \mathrm{H})$; $0.22,0.16(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 468\left(2, M^{+}\right), 440(5), 412(30), 384(51), 252(12), 235(6), 212(13), 156$ (34), 141 (20), 128 (12), 115 (11), 105 (9), 91 (22), 58 (100). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FeO}_{6} \mathrm{~S}(468.318): \mathrm{C} 56.43, \mathrm{H} 4.30$; found: C 56.37, H 4.23.

Tricarbonyl/(IRS,2RS,4RS,5RS,6SR)-C,5,6, C- η-(5,6,7,8-tetramethylidenebicyclo[2.2.2]oct- $2-y l$ benzoate) Jiron (13). A mixture of $11(102 \mathrm{mg}, 0.325 \mathrm{mmol})$, pyridine (2 ml), and benzoyl chloride ($73 \mathrm{mg}, 60 \mu \mathrm{l}, 0.52$ $\mathrm{mmol})$ was stirred at 20° for 100 min . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$, the mixture was washed successively with $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$, 1N $\mathrm{HCl}(50 \mathrm{ml}, 3$ times $)$, sat. aq. NaHCO_{3} soln. (50 ml , twice), and $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue filtered through a short column of silica gel ($10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 1$). Crystallization from hexane at -20° gave $126 \mathrm{mg}(92 \%)$ of yellow crystals. M.p. 119.5-120 . UV ($95 \% \mathrm{EtOH}$): $227(34000), 260$ (sh, 8500), 280 (3900). IR (KBr): 3100, 3070, 3000, 2980, 2960, 2060, 2000, 1985, 1970, 1940, 1715, 1330, 1280, 1120, $1035,895,715 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.07(m, J=8.5,1.5,2 \mathrm{H}) ; 7.61(m, J=7.5,1.5,1 \mathrm{H}) ; 7.49(m$, $J=8.5,7.5,1.5$, arom. 2 H$) ; 5.51(d d d, J=9.5,3.5,3.0, \mathrm{H}-\mathrm{C}(2)) ; 5.46,5.34,4.90,4.88$ (4 s , olef. H); 3.59 (d, $J=3.5, \mathrm{H}-\mathrm{C}(1)) ; 3.29(t, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 2.65(d d d, J=14.0,9.5,3.0,1 \mathrm{H}), 2.04\left(d t, J=14.0,3.0,1 \mathrm{H}, \mathrm{CH}_{2}(3)\right)$; $1.91,1.88,0.32,0.28(4 d, J=2.5) . \mathrm{MS}(70 \mathrm{eV}): 418\left(1, M^{+}\right), 390(9), 362(56), 334(100), 229(6), 212(26), 156(18)$, 141 (15), 128 (11), 115 (13), 105 (60), 77 (57), 56 (55). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FeO}_{5}$ (418.236): C 63.18, H 4.34; found: C 63.37, H 4.18.

Mixture of Tricarbonyl/(1 RS, $8 \mathrm{RS}, 9 \mathrm{RS}, 10 \mathrm{SR}, 11 \mathrm{RS}$)-C,9,10, C- $\boldsymbol{\eta}$-(methyl 11-hydroxy-9,10-dimethylidenetricyclo[6.2.2. $0^{2,7}$]dodeca-2(7),4-diene-4-carboxylate)]iron (19) and Tricarbonyl/(1 RS, 8 RS, $9 \mathrm{SR}, 10 \mathrm{RS}, 12 \mathrm{RS}$)C,9,10, C- η-(methyl 12-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2(7),4-diene-4-carboxylate) Jiron (18). A mixture of $11(24.5 \mathrm{mg}, 0.078 \mathrm{mmol})$, anh. $\mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and methyl 2-propynoate ($\mathbf{1 5} ; 66 \mu \mathrm{l}, 66.4 \mathrm{mg}$) was heated to 80° for 2 h in a Pyrex tube sealed under vacuum. After solvent evaporation, an oily mixture was obtained whose ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) showed a mixture of $\mathbf{1 8} / \mathbf{1 9}$ and $\mathbf{2 0} / \mathbf{2 1}$.

Mixture of Tricarbonyl($1 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 10 \mathrm{SR}, 11 \mathrm{RS}$)-C,9,10, C- $\boldsymbol{\eta}$-(methyl 11-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2,4,6-triene-4-carboxylate)]iron (21) and Tricarbonyl/(1RS, $8 \mathrm{RS}, 9 \mathrm{SR}, 10 \mathrm{RS}, 12 \mathrm{RS}$)-C,9,10,C- η-(methyl 12-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 $0^{2,7}$]dodeca-2,4,6-triene-4-carboxylate)]iron (20). A mixture of $\mathbf{1 8 / 1 9 / 2 0 / 2 1}$ (see above; 30 mg), anh. $\mathrm{C}_{6} \mathrm{H}_{6}(2 \mathrm{ml})$, DDQ (21 mg), and propene oxide ($50 \mu \mathrm{l}$) was heated to 80° for 1 h under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added, the soln. washed with aq. sat. NaHCO_{3} soln. ($15 \mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue filtered through a short column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yielding $29 \mathrm{mg}(97 \%)$ of a $37: 63$ mixture $\mathbf{2 0 / 2 1}$ which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at -25°. M.p. $91-93^{\circ}$.

Data of 21. IR (CHCl_{3}): 3620, 3040, 3000, 2960, 2050, 1975, 1720, 1440, 1320, 1300, 1280, 1170, 1120, 1100, 1050. ${ }^{1} \mathrm{H}$-NMR ($360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $8.07(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 8.05(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(5)) ; 6.89(d, J=7.5$, $\mathrm{H}-\mathrm{C}(6)) ; 4.06(m, \mathrm{H}-\mathrm{C}(11)) ; 3.45\left(s, \mathrm{COOCH}_{3}\right) ; 3.43(d, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 3.16(t, J=2.5, \mathrm{H}-\mathrm{C}(8)) ; 2.05(d d d$, $J=13.0,8.5,2.5, \mathrm{H}-\mathrm{C}(12)$ 'anti' to OH$) ; 1.64,1.58(2 d, J=2.5, H-\mathrm{CH}=\mathrm{C}(9)$ and $H-\mathrm{CH}=\mathrm{C}(10)$ trans to $\mathrm{C}(10)$ and $\mathrm{C}(9)$, resp.); 1.28 (br. $s, \mathrm{OH}) ; 1.17(d t, J=13.0,2.5, \mathrm{H}-\mathrm{C}(12)$ 'syn' to OH$) ; 0.04,0.03(2 d, J=2.5)$.

Data of 20. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 8.03(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(5)) ; 7.97(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.03(d$, $J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 4.06(\mathrm{~m}, \mathrm{H}-\mathrm{C}(12)) ; 3.47\left(\mathrm{~s}, \mathrm{COOCH}_{3}\right) ; 3.42(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.19(t, J=2.5, \mathrm{H}-\mathrm{C}(1))$; $2.04(d d d, J=13.0,8.5,2.5, \mathrm{H}-\mathrm{C}(11)$ 'anti'to OH$) ; 1.62,1.59(2 d, J=2.5) ; 1.28(\mathrm{br} . s, \mathrm{OH}) ; 1.16(d t, J=13.0,2.5$, $\mathrm{H}-\mathrm{C}(11)$ 'syn' to OH); 0.05, $0.01\left(2 d, J=2.5\right.$). MS (70 eV): $396\left(2, M^{+\cdot}\right), 368(16), 340(56), 312(100), 254$ (29) 236 (39), 225 (8), 212 (43), 208 (52), 181 (40), 165 (35), $152(59), 139$ (8), 127 (15), 115 (12), 91 (4), 84 (20), 76 (7), 56 (39). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FeO}_{6}$ (396.187): C 57.60, H 4.07; found: C 57.43, H 4.03.

Mixture of Tricarbonyl/($1 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{SR}, 10 \mathrm{RS}, 12 \mathrm{RS}$)-C,9,10, C- η-(12-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2(7),4-dien-4-yl methyl ketone)]iron (22) and Tricarbonyl/($\left.l \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 10 \mathrm{SR}, 1 / \mathrm{RS}\right)$ $\mathrm{C}, 9,10, \mathrm{C}-\eta$ - $\left(11\right.$-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 $0^{2,7} \mathrm{Jdodeca}-2(7), 4$-dien-4-yl methyl ketone) Jiron (23). A mixture of $11(22 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and 3-butyn-2-one $(\mathbf{1 6} ; 47.7 \mathrm{mg}, 55 \mu \mathrm{l})$ was heated to 80° for 75 \min in a Pyrex tube degassed and sealed under vacuum. After solvent evaporation, one obtains $26 \mathrm{mg}(97 \%)$ of a 32:68 mixture $\mathbf{2 2} / 23$ contaminated with ca. 25% of $\mathbf{2 4} / 25$.

Mixture of Tricarbonyl/(l RS, 8 RS, 9 SR, 10 RS, 12 RS)-C,9,10, C- η-(12 -hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 $\left.{ }^{2,7}\right]$ dodeca-2,4,6-trien-4-yl methyl ketone)]iron (24) and Tricarbonyl/($1 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 10 \mathrm{SR}, 11 \mathrm{RS}$)$\mathrm{C}, 9,10, \mathrm{C}-\eta-\left(11\right.$-hydroxy-9,10-dimethylidenetricyclo[6.2.2.0 $\left.0^{2.7}\right]$ dodeca-2,4,6-trien-4-yl methyl ketone) $)$ iron (25). A mixture of $22 / 23 / 24 / 25$ (see above; $37 \mathrm{mg}, 0.097 \mathrm{mmol}$), $\mathrm{C}_{6} \mathrm{H}_{6}(1.5 \mathrm{ml})$, $\mathrm{DDQ}(41 \mathrm{mg}$), and propene oxide (3 drops) was heated to 80° for 90 min under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added. The soln. was washed with sat. aq. NaHCO_{3} soln. ($30 \mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue filtered through a column of silica gel (10 g , AcOEt/hexane $1: 1$), yielding $28 \mathrm{mg}(76 \%)$ of a $31: 69$ mixture $\mathbf{2 4} / \mathbf{2 5}$, which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25°. M.p. $141-142^{\circ}$. UV $(95 \% \mathrm{EtOH})$: $206(42000), 251(16500)$. IR ($\left.\mathrm{CHCl}_{3}\right)$: $3620,3020,2970,2050,1980,1680,1615,1430,1360,1270,1050$. ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $24: 7.75(d$, $J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.61(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(5)) ; 7.01(d, J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 4.06(m, \mathrm{H}-\mathrm{C}(12)) ; 3.42(d, J=3.0$, $\mathrm{H}-\mathrm{C}(8)) ; 3.16(t, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 2.12\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.04(d d d, J=13.5,9.0,3.0, \mathrm{H}-\mathrm{C}(1)$ 'anti'to OH$) ; 1.62,1.61$ $(2 d, J=2.5) ; 1.16(d d d, J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(11)$ 'syn' to OH$) ; 1.1(\mathrm{br} . s, \mathrm{OH}) ; 0.06,0.02(2 d, J=2.5) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $25: 7.85(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.65(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(5)) ; 6.88(d, J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 4.06$ $(m, \mathrm{H}-\mathrm{C}(11)) ; 3.40(d, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 3.17(t, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 2.10\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.06(d d d, J=13.5,9.0,3.0$, $\mathrm{H}-\mathrm{C}(12)$ 'anti' to OH$) ; 1.66,1.59(2 d, J=2.5) ; 1.18(d d d, J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'syn' to OH$) ; 1.1(\mathrm{br} . s, \mathrm{OH})$; $0.05,0.04(2 d, J=2.5)$. MS (70 eV): $380\left(2, M^{+}\right), 352(10), 324(57), 296(100), 278(24), 263(6), 252(18), 207(6)$, 196 (17), 181 (21), 165 (12), 152 (27), 142 (10), 127 (13), 115 (11), 105 (4), 91 (6). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{FeO}_{5}$ (380.187): C 60.03, H 4.24; found: C 60.12, H 4.28 .

Mixture of Tricarbonyl[(1RS, 8 RS, 9 RS, 11 RS, 12 SR)- C, $11,12, \mathrm{C}-\eta$-(4-methoxycarbonyl-11,12-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$] dodeca-2(7),4-dien-9-yl p -tohenesulfonate)]iron (26) and Tricarbonyl[(1 RS, $8 \mathrm{RS}, 9 \mathrm{RS}, 1 / \mathrm{RS}, 12 \mathrm{SR}$)-C,11,12, $\mathrm{C}-\eta$-(5 -methoxycarbonyl-11,12-dimethylidenetricyclo $\left[6.2 .2 .0^{2,7}\right.$]dodeca-2(7).4-dien-9-yl p-toluenesulfonate)]iron (27). A mixture of $12(23 \mathrm{mg}, 0.049 \mathrm{mmol}), \mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and $15(41.3$ $\mathrm{mg}, 41.5 \mu \mathrm{l}$) was heated to 80° for 7 h in a Pyrex tube degassed and sealed under vacuum. After solvent evaporation, $25 \mathrm{mg}(90 \%)$ of a $89: 11$ mixture $\mathbf{2 6} / 27$ was obtained, contaminated by $\mathbf{2 8} / \mathbf{2 9} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 6}$: $7.8(d, J=8.0,2 \mathrm{H}) ; 7.37(d, J=8.0,2 \mathrm{H}) ; 6.97$ (br. $s, \mathrm{H}-\mathrm{C}(5)) ; 5.11(d d d, J=8.0,5.0,3.0, \mathrm{H}-\mathrm{C}(9)$); $3.75(s$, $\left.\mathrm{CH}_{3} \mathrm{OOC}\right) ; 3.5(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.01(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.98\left(m, \mathrm{CH}_{2}(3), \mathrm{CH}_{2}(6)\right) ; 2.47\left(s, \mathrm{CH}_{3}\right) ; 2.26(d d d$, $J=13.5,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to TsO$) ; 1.98,1.95(2 d, J=2.5,2 \mathrm{H}) ; 1.68(d d d, J=13.5,5.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to TsO$) ; 0.38,0.34(2 d, J=2.5,2 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $27: 7.8,7.37(2 d, J=8.0,4 \mathrm{H}) ; 6.97$ (br. s, $\mathrm{H}-\mathrm{C}(4)) ; 5.11(d d d, J=8.0,5.0,3.0, \mathrm{H}-\mathrm{C}(9)) ; 3.75\left(s, \mathrm{COOCH}_{3}\right) ; 3.45(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.01(t, J=2.5$, $\mathrm{H}-\mathrm{C}(1)) ; 2.98\left(\mathrm{~m}, \mathrm{CH}_{2}(3), \mathrm{CH}_{2}(6)\right) ; 2.47\left(s, \mathrm{CH}_{3}\right) ; 2.28(d d d, J=13.5,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to TsO$) ; 1.97,1.93$ $(2 d, J=2.5,2 \mathrm{H}) ; 1.73(d d d, J=13.5,5.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to TsO$) ; 0.38,0.34(2 d, J=2.5,2 \mathrm{H})$.

Tricarbonyl/(1RS, $8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR})-\mathrm{C}, 11,12, \mathrm{C}-\eta-$ - $4-$ methoxycarbonyl-11,12-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2,4,6-trien-9-y/p-toluenesulfonate)]iron (28). A mixture of $26 / 27$ ($25 \mathrm{mg}, 0.05 \mathrm{mmol}$), anh. $\mathrm{C}_{6} \mathrm{H}_{6}$ (1 ml), DDQ (14.5 mg), and propene oxide (3 drops) was heated to 80° for 45 min under Ar. After cooling to 20°, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added. The soln. was washed with sat. aq. NaHCO_{3} soln. ($15 \mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue filtered through a short column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yielding 20 $\mathrm{mg}(80 \%)$ of a $89: 11$ mixture $\mathbf{2 8 / 2 9}$. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25° gave $17 \mathrm{mg}(68 \%)$ of pure $\mathbf{2 8}$, yellow crystals. M. p. $70-71^{\circ}$. UV ($95 \% \mathrm{EtOH}$): 204 (57300), 225 (38300), 274 (4600). IR (KBr): 3060, 2960, 2050, $1970,1720,1440,1365,1295,1275,1190,1180,1100,945 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.92(d d, J=7.5,1.5$, $\mathrm{H}-\mathrm{C}(5)) ; 7.82(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.74(d t, J=8.0,1.5,2 \mathrm{H}) ; 7.35(\mathrm{br} . d, J=8.0,2 \mathrm{H}, \mathrm{TsO}) ; 7.18(d, J=7.5$, $\mathrm{H}-\mathrm{C}(6)) ; 5.32(d d d, J=8.5,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 4.18(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.90\left(s, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 3.85(t, J=2.5$, $\mathrm{H}-\mathrm{C}(1)) ; 2.56(d d d, J=14.0,8.5,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to TsO$) ; 2.47\left(s, \mathrm{CH}_{3}\right) ; 1.98,1.97(2 d, J=2.5,2 \mathrm{H}) ; 1.76(d t$, $J=14.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to TsO$) ; 0.39,0.33(2 d, J=2.5,2 \mathrm{H}), \mathrm{MS}(70 \mathrm{eV}): 522\left(4, M^{+\cdot}-28\right), 494$ (6), 466 (54), 252 (13), 238 (13), 208 (100), 179 (48), 165 (36), 152 (24), 127 (23), 115 (5), 91 (18), 58 (28). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{FeO}_{8} \mathrm{~S}(550.378)$: $\mathrm{C} 56.74, \mathrm{H} 4.03$; found: $\mathrm{C} 56.81, \mathrm{H} 4.07$.

The mother liquor of the crystallization of 28 contained a mixture 28/29. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 29: 3.91 ($s, \mathrm{CH}_{3} \mathrm{COO}$); $2.48\left(s, \mathrm{CH}_{3}\right)$; the other signals were not distinguishable from those of 28.

Mixture of Tricarbonyl/(1RS, $8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR}$)-C,11,12, C- η-(4-methoxycarbonyl-11,12-dimethylidenetricyclo[6.2.2.0 $0^{2,7}$] dodeca-2(7),4-dien-9-yl benzoate)]iron (30) and Tricarbonyl[$1 / \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 1 / \mathrm{RS}, 12 \mathrm{SR}$)-C,11,12, C- η-(5-methoxycarbonyl-11,12-dimethylidenetricyclo[6.2-2.0 ${ }^{2,7}$]dodeca-2(7).4-dien-9-ylbenzoate) Iiron (31). A mixture of $\mathbf{1 3}(19 \mathrm{mg}, 0.045 \mathrm{mmol})$, anh. $\mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and $\mathbf{1 5}(40.2 \mathrm{mg}, 40$ $\mu \mathrm{l})$ was degassed in vacuo and heated to 80° for 12 h in a Pyrex tube sealed in vacuo. After solvent evaporation, a $95: 5$ mixture $\mathbf{3 0} / \mathbf{3 1}$ was obtained ($21 \mathrm{mg}, 92 \%$), contaminated with $\mathbf{3 2 / 3 3}$.

Tricarbonyl/($1 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR}$)-C,11,12,C- η-(4-methoxycarbonyl-11,12-dimethylidenetricyclo$\left[6.2 .2 .0^{2,7}\right]$ dodeca-2,4,6-trien-9-yl benzoate)]iron (32). To a soln. of crude 30/31/32/33 (see above; $21 \mathrm{mg}, 0.042$ $\mathrm{mmol})$ in anh. $\mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{ml})$, DDQ $(13 \mathrm{mg})$ and propene oxide $(50 \mu \mathrm{l})$ were added. The mixture was heated to 80° for

90 min under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added, the soln. washed with sat. aq. NaHCO_{3} soln. (15 $\mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue filtered through silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yielding $18 \mathrm{mg}(86 \%)$ of a $94: 6$ mixture $32 / 33$. Crystallization from EtOH at -15° afforded $16 \mathrm{mg}(76 \%)$ of pure 32, yellow crystals. M.p. $144-145^{\circ}$. UV ($95 \% \mathrm{EtOH}$): 228 ($\mathrm{sh}, 40500$), 281 (12500). IR (KBr): 3070, 3000, 2950, $2050,1985,1960,1720,1440,1320,1270,1215,1030,720 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 8.01(d d, J=7.5,1.5$, $\mathrm{H}-\mathrm{C}(5)) ; 7.98(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.85(d t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 7.03(t t, J=7.0,1.5,1 \mathrm{H}, \mathrm{Bz}) ; 6.94(t t, J=7.0$, $1.5,2 \mathrm{H}, \mathrm{Bz}) ; 6.90(d, J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 5.54(d d d, J=8.5,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.82(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.46(s$, $\left.\mathrm{CH}_{3} \mathrm{OOC}\right) ; 3.23(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.24(d d d, J=13.0,8.5,2.5, \mathrm{H}-\mathrm{C}(10) \cdot a n t i '$ to BzO$) ; 1.67,1.62(2 d, J=2.5$, $2 \mathrm{H}) ; 1.46(d t, J=13.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to BzO$) ; 0.09,0.06$ ($2 d, J=2.5,2 \mathrm{H}$). MS (70 eV): 416 (15 , $\left.M^{+}-3 \times 28\right), 212(25), 208(32), 179(31), 165(31), 152(34), 127(20), 105(100), 77(56), 51$ (31). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{7}$ (500.296): C 62.42, H 4.03; found: C 62.49, H 4.00,
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 33 (crude reaction mixture): $5.41(m, \mathrm{H}-\mathrm{C}(9)$); $3.68(d, J=3.0, \mathrm{H}-\mathrm{C}(8)$); 3.41 $\left(s, \mathrm{COOCH}_{3}\right) ; 3.13(t, J=2.5, \mathrm{H}-\mathrm{C}(1))$; the other signals were not distinguishable from those of $\mathbf{3 2}$.

Mixture of $\left[(/ \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 1 / \mathrm{RS}, 12 \mathrm{SR})\right.$-C,11,12, $\mathrm{C}-\eta$-(4-Acetyl-11,12-dimethylidenetricyclo[6.2.2. $0^{2,7}$)-dodeca-1(7),4-dien-9-yl benzoate) /tricarbonyliron (34) and /(1 RS, $8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR}$)-C,11,12,C- - -(5-Acetyl-11,12-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2(7).4-dien-9-yl benzoate)]tricarbonyliron (35). A mixture of $13(31 \mathrm{mg}, 0.074 \mathrm{mmol}), \mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and $16(50.5 \mathrm{mg}, 58 \mu \mathrm{l})$ was degassed in vacuo and heated to 80° for 8 h in a Pyrex tube sealed in vacuo. After solvent evaporation, $34 \mathrm{mg}(94 \%$) of a $92: 8$ mixture $34 / 35$ was obtained, contaminated by $c a .20 \%$ of $36 / 37 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ of $34: 8.08(d t, J=7.0,1.5$, $2 \mathrm{H}) ; 7.08(m, 3 \mathrm{H}, \mathrm{Bz}) ; 6.21(m, \mathrm{H}-\mathrm{C}(5)) ; 5.42(d d d, J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.21(d, J=3.0, \mathrm{H}-\mathrm{C}(8))$; $3.12\left(m, \mathrm{CH}_{2}(3)\right) ; 2.80\left(m, \mathrm{CH}_{2}(6)\right) ; 2.47(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.02(d d d, J=13.5,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to $\mathrm{BzO}) ; 1.82\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.73,1.63(2 d, J=2.5,2 \mathrm{H}) ; 1.40(d d d, J=13.5,2.5,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to BzO$)$; $0.13,0.12(2 d, J=2.5,2 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ of 35 (crude reaction mixture): $1.84\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) . \mathrm{MS}(70 \mathrm{eV}): 458$ $\left(7, M^{+\cdot}-28\right), 430(1), 402(73), 280(28), 252(7), 222(13), 207(12), 198(16), 179(32), 165(17), 155$ (35), 141 (10), 122 (42), 105 (100).
 trien-9-yl benzoate) /tricarbonyliron (36). A $92: 8$ mixture 34/35 ($34 \mathrm{mg}, 0.07 \mathrm{mmol}$), anh. $\mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{ml})$, DDQ (29 mg), and propene oxide (3 drops) was heated to 80° for 3 h under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml}$) was added, the soln. washed with sat. aq. NaHCO_{3} soln. ($30 \mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{ml}\right.$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue chromatographed on a column of silica gel ($10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yielding $29 \mathrm{mg}(85 \%)$ of $92: 8$ mixture $36 / 37$. Crystallization from EtOH at -25° gave $26 \mathrm{mg}(76 \%)$ of pure $\mathbf{3 6}$, yellow crystals. M.p. 131.5-132. UV ($95 \% \mathrm{EtOH}$): 230 (36200), 259 (25000), 283 (20000). IR (KBr): 3060, 2990, 2970, 2940, 2050, 1970, $1955,1715,1680,1450,1360,1315,1280,1265,1120,715 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}\right): 7.90(d t, J=7.0,1.5,2 \mathrm{H}$, $\left.\mathrm{B}_{2}\right) ; 7.76(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.61(d d, J=8.0,1.5, \mathrm{H}-\mathrm{C}(5)) ; 7.03(t t, J=7.0,1.5,1 \mathrm{H}, \mathrm{Bz}) ; 6.94(t t, J=7.0,1.5$, $2 \mathrm{H}, \mathrm{B}$) $; 6.88(d, J=8.0, \mathrm{H}-\mathrm{C}(6)) ; 5.54(d d d, J=9.0,3.0,3.0, \mathrm{H}-\mathrm{C}(9)) ; 3.82(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.16(t$, $J=2.8, \mathrm{H}-\mathrm{C}(1)) ; 2.24(d d d, J=13.5,9.0,2.8, \mathrm{H}-\mathrm{C}(10)) ; 2.08\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.68,1.63(2 d, J=2.5,2 \mathrm{H}) ; 1.47(d d d$, $J=13.5,3.0,2.8, \mathrm{H}-\mathrm{C}(10)) ; 0.10,0.07(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 456\left(2, M^{+}-28\right), 428(5), 400(47), 278$ (19), 222 (11), 207 (10), 196 (16), 179 (26), 165 (9), 152 (17), 141 (7), 122 (24), 115 (4), 105 (100). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{FeO}_{6}$ (484.296): C 64.48, H 4.16; found: C $64.47, \mathrm{H} 4.33$.
${ }^{1} \mathrm{H}$-NMR of 37 (crude mixture 36/37): $2.06\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 3.73(d, \mathrm{H}-\mathrm{C}(8)$).
Mixture of Tricarbonyl/(lRS,2RS,3SR,4RS,11RS)-C,2,3,C- η - (1,2,3,4,9,10-hexaliydro-8-methoxy-2,3-di-methylidene-1,4-ethanoanthracen-11-ol)]iron (38) and Tricarbonyl/(1RS,2RS,3SR,4RS,11RS)-C,2,3,C- η ($1,2,3,4,9$, l0-hexahydro-5-methoxy-2,3-dimethylidene-1,4-ethanounthracen-11-ol) Jiron (39). A soln. of 3-methoxyanthranilic acid ($147 \mathrm{mg}, 0.7 \mathrm{mmol}$) in anh. dioxane (0.25 ml) was added simultaneously with a soln. of isopentyl nitrite ($120 \mu \mathrm{l}, 0.7 \mathrm{mmol}$) in anh. dioxane $(0.25 \mathrm{ml})$ to a stirred soln. of $11(45 \mathrm{mg}, 0.14 \mathrm{mmol})$ in anh. dioxane (0.25 ml) at 70°. After heating to 70° for 2 h , the mixture was cooled to $20^{\circ}, 5 \%$ aq. NaOH soln. (30 ml) was added, the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{ml}, 3$ times), the org. phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue filtered through a column of silica gel (5 g , AcOEt/hexane $1: 3$) yielding $43 \mathrm{mg}(71 \%$) of a $28: 72$ mixture $38 / 39$ that crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25°. M.p. $54-56^{\circ}$. UV ($95 \% \mathrm{EtOH}$): 221 (sh, 30000), 278 (6800). IR (KBr): $3440,3050,3000,2950,2860,2840.2050,1960,1580 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $38: 7.04(t, J=8.0, \mathrm{H}-\mathrm{C}(6))$; $6.74(d, J=8.0, \mathrm{H}-\mathrm{C}(5)) ; 6.40(d, J=8.0, \mathrm{H}-\mathrm{C}(7)) ; 4.01(m, \mathrm{H}-\mathrm{C}(11)) ; 2.93(d, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 2.68(t$, $J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 3.7\left(m, \mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 3.34\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 1.90(d d d, J=13.0,8.0,2.5,2.5, \mathrm{H}-\mathrm{C}(12)) ; 1.71,1.62$ $(2 d, J=2.5,2 \mathrm{H}) ; 1.14(d d d, J=13.0,2.5,2.5, \mathrm{H}-\mathrm{C}(2)) ; 1.08(d, J=6.0, \mathrm{OH}) ; 0.11,0.09(2 d, J=2.5,2 \mathrm{H})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MH} _, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $39: 7.06(t, J=8.0, \mathrm{H}-\mathrm{C}(7)) ; 6.76(d, J=8.0, \mathrm{H}-\mathrm{C}(8)) ; 6.40(d, J=8.0, \mathrm{H}-\mathrm{C}(6))$; $4.01(m, \mathrm{H}-\mathrm{C}(11)) ; 2.97(d, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 2.60(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 3.7\left(m, \mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 3.32\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ;$ $1.92(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(12)$ 'anti' to OH$) ; 1.68,1.64(2 d, J=2.5,2 \mathrm{H}) ; 1.14(d d d, J=13.0,2.5,2.5$,
$\mathrm{H}-\mathrm{C}(12)$ 'syn' to OH$) ; 1.07(d, J=6.0, \mathrm{OH}) ; 0.11,0.09(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 392\left(14, M^{+}-28\right), 364$ (27), 336 (100).

Mixture of TricarbonyI/ (IRS,2RS,3SR,4RS,I/RS)-C,2,3,C- η-(1,2,3,4-tetrahydro-8-methoxy-2,3-dimeth-ylidene-1,4-ethanoanthracen-11-ol))iron (40) and Tricarbonyl/(1RS,2RS,3 SR,4RS,11RS)-C,2,3, C- η-(1,2,3,4-te-trahydro-5-methoxy-2,3-dimethylidene-1,4-ethanoanthracen-11-ol) Jiron (41). A mixture of $38 / 29$ (see above; 24 mg , 0.057 mmol), anh. $\mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{ml})$, $\operatorname{DDQ}\left(23 \mathrm{mg}\right.$), and propene oxide (3 drops) was heated to 80° for 150 min under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ was added. The soln. was washed with sat. aq. NaHCO_{3} soln. ($30 \mathrm{ml}, 4$ times) and $\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{ml}\right.$, twice), dried (MgSO_{4}), and evaporated, and the residue chromatographed on a column of silica gel (5 g , AcOEt/hexane 1:3), yielding 18 mg (75%) of a $28: 72$ mixture $40 / 41$. IR $\left(\mathrm{CHCl}_{3}\right): 3620,3570,3060,3020,2960$, $2950,2850,2050,1975,1610,1580 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $40: 8.23(s, \mathrm{H}-\mathrm{C}(9)) ; 7.48(s, \mathrm{H}-\mathrm{C}(10)) ; 7.39(d$, $J=8.0, \mathrm{H}-\mathrm{C}(5)) ; 7.20(t, J=8.0, \mathrm{H}-\mathrm{C}(6)) ; 6.44(d d, J=8.0,0.7, \mathrm{H}-\mathrm{C}(7)) ; 4.16(m, \mathrm{H}-\mathrm{C}(11)) ; 3.56(d, J=3.0$, $\mathrm{H}-\mathrm{C}(4)) ; 3.45\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.38(t, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 2.16(d d d, J=13.5,9.0,3.0, \mathrm{H}-\mathrm{C}(12)) ; 1.66,1.61(2 d, J=2.5$, $2 \mathrm{H}) ; 1.25(d d d, J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'syn' to OH); 0.74 (br. $d, J=8.0, \mathrm{OH}) ; 0.05,0.03(2 d, J=2.5,2 \mathrm{H})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ of $41: 8.34(s, \mathrm{H}-\mathrm{C}(10)) ; 7.40(d, J=8.0, \mathrm{H}-\mathrm{C}(8)) ; 7.36(s, \mathrm{H}-\mathrm{C}(9)) ; 7.22(t, J=8.0$, $\mathrm{H}-\mathrm{C}(7)) ; 6.43(d d, J=8.0,0.7, \mathrm{H}-\mathrm{C}(6)) ; 4.16(\mathrm{~m}, \mathrm{H}-\mathrm{C}(11)) ; 3.58(d, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 3.44\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.33(t$, $J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 2.17(d d d, J=13.5,9.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'anti' to OH$) ; 1.64,1.63(2 d, J=2.5,2 \mathrm{H}) ; 1.26$ (ddd, $J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'syn' to OH$) ; 0.77(\mathrm{br} . d, J=8.0, \mathrm{OH}) ; 0.06,0.02(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 390$ (14, $M^{+\cdot}-28$), 362 (35), 334 (100).

Mixture of Tricarbonyl/(1RS,2RS,3SR,4RS,11RS)-C,2,3, C- $\eta-(1,2,3,4,9,10$-hexahydro-8-methoxy-2,3-di-methylidene-I,4-ethanoanthracen-11-yl benzoate) Jiron (42) and Tricarbonyl/(1RS,2RS,3SR,4RS,11RS)$\mathrm{C}, 2,3, \mathrm{C}-\eta$ - (1,2,3,4,9,10-hexahydro-5-methoxy-2,3-dimethylidene-1,4-ethanoanthracen-11-yl benzoate) Jiron (43). Same procedure as for the preparation of $38 / 39 \mathrm{using} 61 \mathrm{mg}(0.14 \mathrm{mmol})$ of 13 in 0.5 ml of anh. dioxane: 60 mg (76%) of yellow oil containing a $29: 71$ mixture $\mathbf{4 2} / \mathbf{4 3}$ contaminated with $\mathbf{4 4 / 4 5}$. $\mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathbf{4 2}$: $8.03(m, 2 \mathrm{H}) ; 7.04(t, J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 6.99(t t, J=8.0,1.5,1 \mathrm{H}) ; 6.92(t d, J=8.0,1.5,2 \mathrm{H}) ; 6.71(\mathrm{br} . d, J=7.5$, $\mathrm{H}-\mathrm{C}(5)) ; 6.38(d, J=7.5, \mathrm{H}-\mathrm{C}(7)) ; 5.53(d d d, J=8.0,2.5,2.5, \mathrm{H}-\mathrm{C}(11)) ; 3.3-3.9\left(m, \mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 3.31(s$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 3.29(d, J=2.5, \mathrm{H}-\mathrm{C}(4)) ; 2.71(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.13(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(12)) ; 1.76,1.64(2 d$, $J=2.5,2 \mathrm{H}) ; 1.52(d d d, J=13.0,2.5,2.5, \mathrm{H}-\mathrm{C}(12)) ; 0.15,0.14(2 d, J=2.5,2 \mathrm{H}) .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of 43: $8.03(\mathrm{~m}, 2 \mathrm{H}) ; 7.04(t, J=7.5, \mathrm{H}-\mathrm{C}(7)) ; 6.99(t t, J=8.0,1.5,1 \mathrm{H}, \mathrm{Bz}) ; 6.87(t d, J=8.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 6.75$ (br. $d, J=7.5, \mathrm{H}-\mathrm{C}(8)) ; 6.38(d, J=7.5, \mathrm{H}-\mathrm{C}(6)) ; 5.50(d d d, J=8.0,2.5,2.5, \mathrm{H}-\mathrm{C}(11)) ; 3.3-3.9\left(m, \mathrm{CH}_{2}(9)\right.$, $\mathrm{CH}_{2}(10)$); $3.31(d, J=2.5, \mathrm{H}-\mathrm{C}(4)) ; 3.26\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.63(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.18$ (ddd, $J=13.0,8.0,2.5$, $\mathrm{H}-\mathrm{C}(12)$ 'anti' to BzO$) ; 1.72,1.67(2 d, J=2.5,2 \mathrm{H}) ; 1.52(d d d, J=13.0,2.5,2.5, \mathrm{H}-\mathrm{C}(12)$) 'syn' to BzO$) ; 0.16$, $0.13(2 d, J=2.5,2 \mathrm{H})$.

Mixture of Tricarbonyl/(1RS,2RS,3SR,4RS,11RS)-C,2,3,C- $\boldsymbol{\eta}$-(1,2,3,4-tetrahydro-8-methoxy-2,3-dimeth-ytidene-1,4-ethanoanthracen-11-yl benzoate) /iron (44) and Tricarbonyl((1 RS, $2 \mathrm{RS}, 3 \mathrm{SR}, 4 \mathrm{RS}, 11 \mathrm{RS}$)-C,2,3,C- η -(1,2,3,4-tetrahydro-5-methoxy-2,3-dimethylidene-1,4-ethanoanthracen-11-yl benzoate)]iron (45). Same procedure as for the preparation of $\mathbf{4 0 / 4 1}$, using $27 \mathrm{mg}(0.052 \mathrm{mmol})$ of $\mathbf{4 2} / 43$ (see above): 19 mg (70%) of $29: 71$ mixture 44/45, yellow oil. IR $\left(\mathrm{CHCl}_{3}\right)$. $3060,3020,2960,2940,2850,2050,1975,1710,1610 .{ }^{\mathrm{i}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 44: $8.05(s, \mathrm{H}-\mathrm{C}(9)) ; 7.74(d t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 7.62(s, \mathrm{H}-\mathrm{C}(10)) ; 7.48(t t, J=7.0,1.5,1 \mathrm{H}, \mathrm{Bz}) ; 7.36(m$, $4 \mathrm{H}, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6), \mathrm{Bz}) ; 6.84(d d, J=7.0,1.0, \mathrm{H}-\mathrm{C}(7)) ; 5.74(d d d, J=9.0,3.0,3.0, \mathrm{H}-\mathrm{C}(11)) ; 4.33(d, J=3.0$, $\mathrm{H}-\mathrm{C}(4)) ; 4.07(t, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 3.99\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.87(d d d, J=13.5,9.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'anti' to BzO$) ; 2.12,2.10$ $(2 d, J=2.5,2 \mathrm{H}) ; 1.92(d d d, J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'syn' to BzO$) ; 0.51,0.46(2 d, J=2.5,2 \mathrm{H}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(360$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $45: 8.07(s, \mathrm{H}-\mathrm{C}(10)) ; 7.77(d t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 7.60(s, \mathrm{H}-\mathrm{C}(9)) ; 7.49(t t, J=7.0,1.5,1 \mathrm{H}$, $\mathrm{Bz}) ; 7.36(m, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(8), \mathrm{Bz}) ; 6.83(d d, J=7.0,1.0, \mathrm{H}-\mathrm{C}(6)) ; 5.75(d d d, J=9.0,3.0,3.0, \mathrm{H}-\mathrm{C}(11))$; $4.35(d, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 4.03(t, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 3.96\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.88(d d d, J=13.5,9.0,3.0, \mathrm{H}-\mathrm{C}(12)$ 'anti' to $\mathrm{BzO}) ; 2.12,2.10(2 d, J=2.5,2 \mathrm{H}) ; 1.92(d d d, J=13.5,3.0,3.0, \mathrm{H}-\mathrm{C}(12) ~ ' s y n '$ to BzO$) ; 0.50,0.46(2 d, J=2.5,2$ H). MS (70 eV): 494 ($10, M^{+\cdot}-28$), 466 (43), 438 (100).
[($1 \mathrm{RS}, 4 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR})-\mathrm{C}, 11,12, \mathrm{C}-\eta-(4-$ Acetoxy-4-cayno-11,12-dimethylidenetricyclo$\left[6.2 .2 .0^{2,7}\right]$ dodec-2(7)-en-9-yl benzoate)]tricarbonyliron (46) and [(l/RS,4SR,8RS,9RS,11RS,12SR)C,11,12, C- η-(4-Acetoxy-4-cyano-11,12-dimethylidenetricyclo/ $6.2 .2 .0^{2,7}$ Jdodec-2(7)-en-9-yl benzoate)]tricarbonyliron (47). A mixture of 13 ($55 \mathrm{mg}, 0.132 \mathrm{mmol}$), $\mathrm{C}_{6} \mathrm{H}_{6}(0.3 \mathrm{ml})$, and 1-cyanovinyl acetate ($1.5 \mathrm{ml}, 1,6 \mathrm{~g}$) was degassed in vacuo and heated, in a Pyrex tube sealed in vacuo, to 80° for 70 h . The mixture was filtered on a short column of silica gel ($5 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The yellow fraction was recovered, dried in vacuo, and separated by chromatography on silica gel (10 g , AcOEt/hexane $1: 9$). A 1st fraction (less polar) yielded $43 \mathrm{mg}(63 \%$) of 46 (arbitrary attribution) after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at -25°. A 2nd fraction (more polar) yielded $12 \mathrm{mg}(17 \%)$ of 47 after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at -25°.

Data of 46. Yellowish crystals. M.p. 161.5-162 . UV (95\% EtOH): 226 (30800), 275 (4200), 283 (3900). IR $(\mathrm{KBr}): 3070,2960,2940,2850,2040,1970,1750,1715,1455,1440,1370,1320,1270,1225,1105,1035,720$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.08(d t, J=8.0,1.5,2 \mathrm{H}) ; 7.57(t t, J=8.0,1.5,1 \mathrm{H}) ; 7.45(t t, J=8.0,1.5,2 \mathrm{H}, \mathrm{Bz})$; $5.62(d d d, J=8.0,2.5,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.60(d, J=2.5, \mathrm{H}-\mathrm{C}(8)) ; 3.20(d d d, J=17.5,4.0,1.5, \mathrm{H}-\mathrm{C}(3)) ; 3.16(t$, $J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.75(d t, J=17.5,3.0, \mathrm{H}-\mathrm{C}(3)) ; 2.54(d d d, J=13.5,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to BzO$) ; 2.44$ (m , $\left.\mathrm{CH}_{2}(5)\right) ; 2.33,2.15\left(2 m, \mathrm{CH}_{2}(6)\right) ; 2.11\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.115,2.04(2 d, J=2.5,2 \mathrm{H}) ; 1.85(d d d, J=13.5,2.5,2.5$, $\mathrm{H}-\mathrm{C}(11)$ 'syn' to BzO$) ; 0.50,0.48(2 d, J=2.5,2 \mathrm{H})$. MS (70 eV): $473\left(8, M^{+-}-56\right), 445(100), 385$ (26). Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FeNO}_{7}$ (529.339): C 61.27, H 4.38 ; found: $\mathrm{C} 61.18, \mathrm{H} 4.50$.

Data of 47. Yellowish crystals. M.p. 138-140 .IR (KBr): 3060, 2980, 2960, 2930, 2860, 2045, 1965, 1750, 1715, $1455,1440,1370,1350,1320,1270,1230,1110,1035 .{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.97(d t, J=8.0,1.5,2 \mathrm{H}) ; 7.60$ $(t t, J=8.0,1.5,1 \mathrm{H}) ; 7.46(t t, J=8.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 5.53(d d d, J=8.0,2.5,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.60(d, J=2.5$, $\mathrm{H}-\mathrm{C}(8)) ; 3.14(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 3.09(d t, J=17.5,2.5, \mathrm{H}-\mathrm{C}(3)) ; 2.86(d d d, J=17.5,3.5,1.5, \mathrm{H}-\mathrm{C}(3)) ; 2.58$ (ddd, $J=13.5,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to BzO$) ; 2.56,2.38\left(2 m, \mathrm{CH}_{2}(6)\right) ; 2.38,2.24\left(2 m, \mathrm{CH}_{2}(5)\right) ; 2.07,2.00$ ($2 d$, $J=2.5,2 \mathrm{H}) ; 1.95\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.70(d d d, J=13.5,2.5,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to BzO$) ; 0.46,0.44(2 d, J=2.5,2 \mathrm{H})$. MS (70 eV): $473\left(7, \mathrm{M}^{+\cdot}-56\right), 445(70), 376(41), 254(23), 190(34), 105(100)$. Anal. calc. for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{FeNO}_{7}$ (529.339): C 61.27, H 4.38; found: C 61.31, H 4.26.
/($1 \mathrm{RS}, 4 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR})-$ and ($1 \mathrm{RS}, 4 \mathrm{SR}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR}$)-C, $11,12, \mathrm{C}-\eta-(4-$ Acetyl-11,12dimethylidenetricycto[6.2.2.0 $0^{2,7}$]dodec-2(7)-en-9-yl benzoate)]tricarbonyliron (48 and 49, resp. and $[(1 \mathrm{RS}, 5 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR})$ - and ($1 \mathrm{RS}, 5 \mathrm{SR}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{RS}, 12 \mathrm{SR}$)-C. $11,12, \mathrm{C}-\eta-(5$-Acetyl- 11,12 -dimethylidenetricyclo[6.2.2.0 $0^{2.7}$]dodec-2(7)-en-9-yl benzoate) Jtricarbonyliron ($\mathbf{5 0}$ and $\mathbf{5 1}$, resp.). A mixture of 13 (24 $\mathrm{mg}, 0.057 \mathrm{mmol}$), anh. $\mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and methyl vinyl ketone (MVK; $40 \mathrm{mg}, 47 \mu \mathrm{l}$) was degassed in vacuo and heated to 60° for 18 h in a Pyrex tube sealed in vacuo. After solvent evaporation, the residue was separated by medium-pressure chromatography (Lobar, col. $A, \mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $1: 9$) giving 3 fractions. The 1 st fraction contained 3 mg (11%) of a $3: 1$ mixture $\mathbf{4 8} / 50^{3}$), yellowish oil. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25° gave pure 48. The 2nd fraction contained $12 \mathrm{mg}(43 \%)$ of 51^{3}), crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25°. The 3rd fraction contained $6 \mathrm{mg}(22 \%)$ of 49, yellowish oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture: 13:24:5:58 ratio of 48/49/50/51.

Data of 48. Yellowish crystals. M.p. 122-123 . $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right): 3020,2960,2930,2050,1975,1710,1455,1360$, $1320,1275 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.97(d t, J=7.0,1.5,2 \mathrm{H}) ; 7.58(t t, J=7.0,1.5,1 \mathrm{H}) ; 7.46(t t, J=7.0$, $1.5,2 \mathrm{H}, \mathrm{Bz}) ; 5.57(d d d, J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.50(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.18(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.6,2.5$ $(2 m, 2 \mathrm{H}), 2.3(m, 3 \mathrm{H}), 2.0$ and $1.72\left(2 m, 2 \mathrm{H} ; \mathrm{CH}_{2}(3), \mathrm{H}-\mathrm{C}(4), \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) ; 2.48(d d d, J=13.0,8.0,2.5$, $\mathrm{H}-\mathrm{C}(10)$ 'anti' to BzO$) ; 2.19\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.09,2.04(2 d, J=2.5,2 \mathrm{H}) ; 1.81(d t, J=13.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to $\mathrm{BzO}) ; 0.48,0.46(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 460\left(1, M^{+-}-28\right), 432(36), 404$ (76), 358 (11), 280 (38), 252 (49), 105 (100).

Data of 49: Yellow oil. IR (CHCl_{3}): 3060, 2995, 2960, 2940, 2840, 2050, 1975, 1710, 1450, 1265. ${ }^{1} \mathrm{H}-\mathrm{NMR}(360$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.00(d t, J=7.0,1.5,2 \mathrm{H}) ; 7.60(t t, J=7.0,1.5,1 \mathrm{H}) ; 7.48(t t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 5.53(d d d$, $J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.52(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.16(t, J=2.5, \mathrm{H}-\mathrm{C}(11)) ; 2.6(\mathrm{~m}, 1 \mathrm{H}) ; 2.3-2.4(\mathrm{~m}, 3 \mathrm{H})$, $2.05(m, 1 \mathrm{H}), 1.6\left(m, 2 \mathrm{H} ; \mathrm{CH}_{2}(3), \mathrm{H}-\mathrm{C}(4), \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) ; 2.54(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'anti' to BzO$)$; $2.19\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.06,2.02(2 d, J=2.5,2 \mathrm{H}) ; 1.75(d t, J=13.0,2.5, \mathrm{H}-\mathrm{C}(10)$ 'syn' to BzO$) ; 0.46,0.43$ ($2 d$, $J=2.5,2 \mathrm{H}) . \operatorname{MS}(70 \mathrm{eV}): 432\left(4, M^{+-}-56\right), 404(99), 358(23), 105(100)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{FeO}_{6}(488.328): \mathrm{C}$ 63.95, H 4.95; found: C 64.01, H 5.03.

Data of 51 (the relative configuration at $\mathrm{C}(5)$ is not established; we chose the major adduct to result from anti-Alder, 'meta' mode of attack, see Fig. 3). Yellow crystals. M.p. 103-104 ${ }^{\circ}$. IR (CHCl_{3}): 3040, 2960, 2840, 2050, $1975,1710,1455,1320,1275 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.99(d t, J=7.0,1.5,2 \mathrm{H}) ; 7.60(t t, J=7.0,1.5,1 \mathrm{H})$; $7.47(t t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz}) ; 5.57(d d, J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.52(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.18(t, J=2.5$, $\mathrm{H}-\mathrm{C}(1)) ; 2.6(m, 1 \mathrm{H}), 2.4-2.3(m, 4 \mathrm{H}), 2.05(m, 1 \mathrm{H}), 1.55\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}(3), \mathrm{CH}_{2}(4), \mathrm{H}-\mathrm{C}(5), \mathrm{CH}_{2}(6)\right) ; 2.50(d d d$, $J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(10) \cdot$ 'anti' to BzO$) ; 2.11\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.07,2.01(2 d, J=2.5,2 \mathrm{H}) ; 1.74(d t, J=13.0,2.5$, $\mathrm{H}-\mathrm{C}(10)$ 'syn' to BzO$) ; 0.45,0,43(2 d, J=2.5,2 \mathrm{H}), \mathrm{MS}(70 \mathrm{eV}): 432\left(4, \mathrm{M}^{+\cdot}-56\right), 404$ (92), 358 (29), 141 (50), 129 (44), 122 (60), 105 (100).

Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 0}: 3.53(d, J=3.5, \mathrm{H}-\mathrm{C}(8)) ; 2.11\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.07,2.05(2 d, J=2.5$, $2 \mathrm{H}) ; 0.45,0.43(2 d, J=2.5,2 \mathrm{H})$.

Cycloaddition of 13 to MVK Catalyzed by $\mathrm{BF}_{3} \cdot E t_{2} \mathrm{O}$. Freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(75 \mu \mathrm{l}, 85 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added to a stirred soln. of $13(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at -78° under Ar. After stirring at -78° for 15 min , MVK ($49 \mu \mathrm{l}, 41.9 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added and the mixture stirred at -78° for 150 min . The mixture was poured into a vigorously stirred mixture of sat. aq. NaHCO_{3} soln. $(100 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$. The org. phase was washed with sat. aq. NaHCO_{3} soln. (60 ml , twice) and sat. aq. NaCl soln. $\left(60 \mathrm{ml}\right.$, twice), dried $\left(\mathrm{MgSO}_{4}\right)$, and
evaporated and the residue filtered through a short column of silica gel ($5 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yielding $54 \mathrm{mg}(82 \%)$ of a 15:12:5:68 mixture of $\mathbf{4 8} / \mathbf{4 9} / 50 / 51^{3}$), by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Tricarbonyl/(1RS, $4 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{SR}, 10 \mathrm{RS}, 12 \mathrm{RS})-\mathrm{C}, 9,10, \mathrm{C}-\eta-$ (12 -hydroxy-9, 10 -dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodec-2(7)-en-4-yl methyl ketone)]iron (52) and Tricarbonyl/(1RS,4SR,8RS,9RS,10SR,1/RS)C,9.10, C- η-(11-hydroxy-9,10-dimethylidenetricyclo $6.2 .2 \cdot 0^{2,7}$ Idodec-2(7)-en-4-yl methyl ketone) Jiron (54) ${ }^{3}$). A mixture of 11 ($29 \mathrm{mg}, 0.092 \mathrm{mmol}$), anh. $\mathrm{C}_{6} \mathrm{H}_{6}(0.5 \mathrm{ml})$, and MVK ($76 \mu \mathrm{l}, 65 \mathrm{mg}$) was degassed in vacuo and heated to 60° for 4 h in a Pyrex tube sealed in vacuo. After solvent evaporation, the residue was separated by medium-pressure chromatography (Lobar, col. $\mathrm{A}, \mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $3: 7$) yielding 2 yellowish fractions. The 1 st gave 7 mg (20%) of 54 after crystalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at -25°. The 2nd, more polar fraction gave $24 \mathrm{mg}(68 \%$) of 52, after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at -25° (see below).

Data of 52. Yellow crystals. M.p. 126.5-127. UV ($95 \% \mathrm{EtOH}$): 223 (sh, 23400), 288 (3000). IR (KBr): 3520, $2960,2930,2900,2860,2840,2040,1975,1950,1700,1460,1440,1375,1355,1295,1215,1170,1055 .{ }^{1} \mathrm{H}-\mathrm{NMR}(360$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 4.12(\mathrm{~m}, \mathrm{H}-\mathrm{C}(12)) ; 2.93(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 2.58(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.27(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4)) ; 2.17$, $1.91\left(2 m, \mathrm{CH}_{2}(6)\right) ; 2.11\left(m, \mathrm{CH}_{2}(3)\right) ; 1.98(d d d, J=13.0,7.5,2.5, \mathrm{H}-\mathrm{C}(11)$ 'anti' to OH$) ; 1.75,1.66(2 d, J=2.5,2$ $\mathrm{H}) ; 1.61\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.61(\mathrm{br} . \mathrm{s}, \mathrm{OH}) ; 1.57,1.53\left(2 \mathrm{~m}, \mathrm{CH}_{2}(5)\right) ; 1.45(d d d, J=13.0,3.0,2.5, \mathrm{H}-\mathrm{C}(11)$ 'syn'to OH$)$; $0.14,0.11(2 d, J=2.5,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 211.7\left(\mathrm{Fe}(\mathrm{CO})_{3}\right) ; 210.5(\mathrm{CO}-\mathrm{C}(4)) ; 136.6,135.4(\mathrm{C}(2)$, $\mathrm{C}(7)) ; 111.4,107.1(\mathrm{C}(9), \mathrm{C}(10)) ; 71.8(\mathrm{C}(12)) ; 51.7(\mathrm{C}(4)) ; 45.9(\mathrm{C}(1)) ; 43.2(\mathrm{C}(8)) ; 40.3,39.1(C=\mathrm{C}(9), C=\mathrm{C}(10))$; $38.1(\mathrm{C}(11)) ; 27.9(\mathrm{C}(3)) ; 27.6\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 27.3(\mathrm{C}(6)) ; 24.8(\mathrm{C}(5))$. $\mathrm{MS}(70 \mathrm{eV}): 356\left(28, M^{+\cdot}-28\right), 328(53), 300$ (59), $280(100), 252(29), 238(18), 219(9), 200(14), 183(37), 165(22), 155(51), 141(41), 128(43), 115$ (34), 91 (23). Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{FeO}_{5}$ (384.219): C 59.40 , H 5.25; found: C 59.49 , H 5.24.

Data of 54 (the configuration at $\mathrm{C}(4)$ is chosen like that at $\mathrm{C}(4)$ in $\mathbf{5 2}$; we assume an Alder mode of addition and the probable intervention of H -bridging in the transition state). Yellow crystals. M.p. $125-126^{\circ} . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$: 3450, 3010, 2960, 2880, 2840, 2050, 1970, 1700, 1455, 1440, 1415, 1170. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 4.43(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(11)) ; 3.26(d, J=3.0, \mathrm{H}-\mathrm{C}(1)) ; 2.56(t, J=2.5, \mathrm{H}-\mathrm{C}(8)) ; 2.29(m, 3 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.63\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}_{2}(3)\right.$, $\left.\mathrm{H}-\mathrm{C}(4), \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) ; 2.09(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(12)$ 'anti' to OH$) ; 1.90,1.76(2 d, J=2.5,2 \mathrm{H}) ; 1.66(s$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right) ; 1.50$ (br. $\left.s, \mathrm{OH}\right) ; 1.38(d d d, J=13.0,2.5,2.5, \mathrm{H}-\mathrm{C}(12)$ 'syn' to OH$) ; 0.27,0.26(2 d, J=2.5,2 \mathrm{H}) . \mathrm{MS}(70$ eV): 384 (1, M^{+-}), $356(50), 328(63), 300(66), 280(100)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FeO}_{5}$ (384.219): C 59.40, H 5.25; found: C 59.49, H 5.24

Cycloaddition of 11 to MVK Catalyzed by $B F_{3} \cdot E t_{2} O$. As above for the analogous addition of 13 , with 42 mg $(0.134 \mathrm{mmol})$ of $\mathbf{1 1}(90 \mathrm{~min}$ reaction with MVK). Filtration through a short column of silica gel ($5 \mathrm{~g}, \mathrm{AcOEt} / \mathrm{hexane}$ 1:1) yielded $47 \mathrm{mg}(91 \%)$ of pure 52 after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25°. When first MVK was complexed with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at -78°, the reaction gave also pure 52 in 93% yield.

Benzoylation of 52 to 48 . A mixture of $52(32 \mathrm{mg}, 0.08 \mathrm{mmol})$, pyridine (1 ml), and benzoyl chloride (17.6 mg , $15 \mu \mathrm{l})$ was stirred at 0° for 2 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, the soln. was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, $1 \mathrm{~N} \mathrm{HCl}(20$ $\mathrm{ml}, 3$ times), sat. aq. NaHCO_{3} soln. (20 ml , twice), and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at $-25^{\circ}: 39 \mathrm{mg}$ (96%) of pure 48 (see above).

Tricarbonyl($1 \mathrm{RS}, 4 \mathrm{SR}, 8 \mathrm{RS}, 9 \mathrm{SR}, 10 \mathrm{RS}, 12 \mathrm{RS}$) - C, $9,10, \mathrm{C}-\eta$ - (12- hydroxy-9, 10 - dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodec-2(7)-en-4-yl methyl ketone)]iron (53) by Base-Catalyzed Isomerization of 52. A mixture of 52 (34 mg, 0.09 mmol), anh. $\mathrm{MeOH}(1.5 \mathrm{ml})$, and anh. $\mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{mg})$ was stirred at 20° for $2 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O} 1: 1(40 \mathrm{mi})$ was added the aq. layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($30 \mathrm{ml}, 3$ times), the combined org. phase dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue chromatographed on a column of silica gel ($10 \mathrm{~g}, \mathrm{AcOEt} / \mathrm{hexane} 1: 1$). The 1st fraction contained $16 \mathrm{mg}(47 \%)$ of pure 52 . The 2 nd fraction yielded $16 \mathrm{mg}(47 \%)$ of pure 53 , yellow oil. ${ }^{\mathrm{i}} \mathrm{H}-\mathrm{NMR}$ (360 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 3.92(m, \mathrm{H}-\mathrm{C}(12)) ; 2.71(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 2.47(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.40(m, 1 \mathrm{H}), 2.13(m, 2 \mathrm{H})$, $1.96(m, 2 \mathrm{H}), 1.72(m, 1 \mathrm{H}), 1.37\left(m, 1 \mathrm{H} ; \mathrm{CH}_{2}(3), \mathrm{H}-\mathrm{C}(4), \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) ; 1.87(d d d, J=13.0,7.5,2.5, \mathrm{H}-\mathrm{C}(11)$ 'anti' to OH$) ; 1.71\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.67,1.64(2 d, J=2.5,2 \mathrm{H}) ; 1.45(d t, J=13.0,2.5, \mathrm{H}-\mathrm{C}(11)$ 'syn' to OH$) ; 1.34(s$, $\mathrm{OH}) ; 0.11,0.09(2 d, J=2.5,2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 211.8\left(\mathrm{Fe}(\mathrm{CO})_{3}\right) ; 208.3(\mathrm{CO}-\mathrm{C}(4)) ; 136.9,135.2$ ($\mathrm{C}(2), \mathrm{C}(7)) ; 110.6,107.1(\mathrm{C}(9), \mathrm{C}(10)) ; 71.3(\mathrm{C}(12)) ; 51.8(\mathrm{C}(8)) ; 48.2(\mathrm{C}(4)) ; 42.9(\mathrm{C}(1)) ; 39.4,39.1(\mathrm{C}=\mathrm{C}(9)$, $C=\mathrm{C}(10)) ; 37.7(\mathrm{C}(11)) ; 29.5(\mathrm{C}(3)) ; 27.2\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 25.5(\mathrm{C}(5))$.

Benzoylation of 53 (same procedure as for the benzoylation of 52, see above) gave 49.
Tricarbonyl/($/ \mathrm{RS}, 2 \mathrm{RS}, 4 \mathrm{RS}, 5 \mathrm{SR}, 6 \mathrm{RS})$-C,5,6, C- $\boldsymbol{\eta}$-(5,6,7,8-tetramethylidenebicyclo[2.2.2]octan-2-ol)]iron (61). A mixture of anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml}), 10(492 \mathrm{ing}, 1.084 \mathrm{mmol}), o$-chloranil ($480 \mathrm{mg}, 1.95 \mathrm{mmol}$), AcONa (120 mg), and $\mathrm{SiO}_{2}(7.9 \mathrm{~g})$ was stirred in a ultrasounds water bath at 20° for 5 h 30 min . The mixture was filtered, the precipitate washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln. washed with sat. aq. NaHCO soln. ($100 \mathrm{ml}, 3$ times), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue filtered through a short column of silica gel $\left(10 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After solvent evaporation, the oily residue was separated by medium-pressure chromatography (Lobar, col. A, SiO_{2}, AcOMe/pentane 3:97). A 1st fraction gave 118 mg (67% based on recovered $\mathbf{1 0}$) of $\mathbf{6 1}$, after crystallization from
$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane at -25°. A 2nd fraction gave 237 mg of 10.61 : Yellow crystals. M.p. $121.5-122^{\circ}$. $\mathrm{UV}(95 \% \mathrm{EtOH})$: 202 (24500), 217 (23000), 254 (10100), 304 (2600). IR (KBr): 3280, 3080, 3060, 2980, 2950, 2930, 2860, 2040, 1980, 1960, 1920, 1055. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, [LIS by $\left.\left.\mathrm{Eu}(\mathrm{thd})_{3}\right]\right): 5.77(s,[16.3], 1 \mathrm{H}, \mathrm{H}-\mathrm{CH}=\mathrm{C}(7)$ cis to $\mathrm{C}(8)$); $5.53(s,[12.3], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(8)$ cis to $\mathrm{C}(7)) ; 5.23(s,[11.9], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(8)$ trans to $\mathrm{C}(7)) ; 5.12(s,[22.9], 1 \mathrm{H}$, $H-\mathrm{CH}=\mathrm{C}(7)$ trans to $\mathrm{C}(8)) ; 4.02(m,[100], J=9.5,6.0,3.0,2.5, \mathrm{H}-\mathrm{C}(2)) ; 3.26(d, J=3.5,[57.7], \mathrm{H}-\mathrm{C}(1)) ; 3.20(t$, $J=3.0,[18.9], \mathrm{H}-\mathrm{C}(4)) ; 2.26(d d d, J=14.0,9.5,3.0,[31.9], \mathrm{H}-\mathrm{C}(3)$ 'anti' to OH$) ; 1.87(d, J=6.0, \mathrm{OH}) ; 1.86(d$, $J=2.5,[9.6], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(5)$ trans to $\mathrm{C}(6)) ; 1.80(d, J=2.5,[12.8], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(6)$ trans to $\mathrm{C}(5)) ; 1.62(d d d$, $J=14.0,3.0,2.5,[60.6], \mathrm{H}-\mathrm{C}(3)$ 'syn' to OH$) ; 0.32(d, J=2.5,[9.9], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(5)$ cis to $\mathrm{C}(6)) ; 0.29$ (d, $J=2.5,[10.8], 1 \mathrm{H}, H-\mathrm{CH}=\mathrm{C}(6)$ cis to C(5)). MS (70 eV): $314\left(8, M^{+\cdots), 286(55), 258(48), 230(98), 212(32), 174}\right.$ (6), 156 (33), 141 (18), 128 (24), 115 (30), 105 (12), 91 (18), 84 (25), 77 (18), 56 (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FeO}_{4}$ (314.127): C 57.36, H 4.49; found: C 57.25, H 4.53.

Tricarbonyl/ ($1 \mathrm{RS}, 2 \mathrm{RS}, 4 \mathrm{RS}, 5 \mathrm{SR}, 6 \mathrm{RS}$)-C,5,6,C- η-(5,6,7,8-tetramethylidenebicyclo[2.2.2]oct-2-yl benzoate)]iron (56). Same procedure as for the benzoylation of 52 (see above), using 61 ($37 \mathrm{mg}, 0.118 \mathrm{mmol}$): 45 mg (91%), yellow crystals. M.p. $154.5-155^{\circ}$. UV (isooctane): 225 (33300), 252 (sh, 12500), 280 (2700), 312 (2200). UV ($95 \% \mathrm{EtOH}$): 227 (32000), 253 (sh, 12200), 281 (2700), 310 (2300). 1R (KBr): 3070, 2990, 2960, 2040, 1985, 1965, $1935,1720,1450,1330,1290,1270,1115,1025,900 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.06(\mathrm{~m}, J=7.5,1.5,2 \mathrm{H}) ; 7.59$ $(m, J=7.5,1.5,1.0,1 \mathrm{H}) ; 7.47(m, J=7.5,1.5,1.0,2 \mathrm{H}, \mathrm{Bz}) ; 5.70,5.58,5.17,5.16(4 \mathrm{~s}, 4 \mathrm{H}) ; 5.21$ (ddd, $\left.{ }^{3} J\left(\mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\text {anti }}-\mathrm{C}(3)\right)=10.0,{ }^{3} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(1))=3.5,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\text {syn }}-\mathrm{C}(3)\right)=3.5, \quad \mathrm{H}-\mathrm{C}(2)\right) ; 3.60(d$, $J=3.5, \mathrm{H}-\mathrm{C}(1)) ; 3.30(t, J=3.0, \mathrm{H}-\mathrm{C}(4)) ; 2.39(d d d, J=14.0,10.0,3.0, \mathrm{H}-\mathrm{C}(3)$ anti' to BzO$) ; 1.94$ (ddd, $J=14.0,3.5,3.0, \mathrm{H}-\mathrm{C}(3) \operatorname{syn}$ to BzO$) ; 1.91(d, J=2.5,1 \mathrm{H}) ; 1.87(d, J=3.0,1 \mathrm{H}) ; 0.37(d, J=2.5,1 \mathrm{H}) ; 0.32(d$, $J=3.0,1 \mathrm{H}) . \mathrm{MS}(70 \mathrm{eV}): 418\left(1, M^{+`}\right), 390(6), 362(29), 334(100), 229$ (7), 212 (57), 156 (17), 141 (16), 128 (12), 115 (14), 105 (44). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FeO}_{5}$ (418.236): C 63.18, H 4.34; found: C 63.29, H 4.43.

Mixture of Tricarbonyl/(1RS,8RS,9RS,11SR,12RS)-C,11,12, C- $\boldsymbol{\eta}$-(4-methoxycarbonyl-11,12-dimethylidenetricyclo[6.2.2.0 $0^{2,7}$]dodeca-2,4,6-trien-9-ylbenzoate)]iron(59) and Tricarbonyl/($1 \mathrm{RS}, 8 \mathrm{RS}, 9 \mathrm{RS}, 11 \mathrm{SR}, 12 \mathrm{RS}$)C, 11,12, C- η-(5-methoxycarbonyl-11,12-dimethylidenetricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-2,4,6-trien-9-yl benzoate)]iron (60). A mixture of $56(22 \mathrm{mg}, 0.053 \mathrm{mmol})$, anh. benzene (0.5 ml), and $15(44.2 \mathrm{mg}, 44 \mu \mathrm{l}, 0.53 \mathrm{mmol})$ was degassed in vacuo and heated to 80° for 10 h in a Pyrex tube sealed in vacuo. After solvent evaporation, 25 mg (94%) of $57 / 58$ were obtained. $\mathrm{C}_{6} \mathrm{H}_{6}(1 \mathrm{ml})$, DDQ $(14 \mathrm{mg})$, and propene oxide $(50 \mu \mathrm{l})$ were added. The mixture was heated to 80° for 30 min under Ar. After cooling to $20^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added, the soln. washed with sat. aq. NaHCO_{3} soln. (15 $\mathrm{ml}, 3$ times) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue filtered on silica gel ($5 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), yielding $21 \mathrm{mg}\left(85 \%\right.$) of a $68: 32$ mixture 59/60. IR $\left(\mathrm{CHCl}_{3}\right): 3020,2960,2055,1980,1970,1715,1600 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $59: 8.03(d, J=1.5, \mathrm{H}-\mathrm{C}(3)) ; 7.93(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(5)) ; 7.85(d t, J=7.0,1.5,2 \mathrm{H}, \mathrm{Bz})$; $6.93(m, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}(4), \mathrm{Bz}) ; 5.58(d d d, J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.88(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.50\left(s, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 3.08$ $(t, J=2.5, \mathrm{H}-\mathrm{C}(1)) ; 2.28(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(10)) ; 1.54,1.49(2 d, J=2.5,2 \mathrm{H}) ; 1.38(d d d, J=13.0,2.5$, $2.5, \mathrm{H}-\mathrm{C}(10)$); $-0.13,-0.02(2 d, J=2.5,2 \mathrm{H}) .{ }^{\mathrm{T}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $60: 8.11(d, J=1.5, \mathrm{H}-\mathrm{C}(6))$; $8.04(d d, J=7.5,1.5, \mathrm{H}-\mathrm{C}(4)) ; 7.86(d t, J=7.0,1.5,2 \mathrm{H}) ; 7.02(t t, J=7.0,1.5,1 \mathrm{H}, \mathrm{Bz}) ; 6.93(m, 3 \mathrm{H}, \mathrm{H}-\mathrm{C}(3)$, $\mathrm{Bz}) ; 5.58(d d d, J=8.0,3.0,2.5, \mathrm{H}-\mathrm{C}(9)) ; 3.83(d, J=3.0, \mathrm{H}-\mathrm{C}(8)) ; 3.43\left(s, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 3.05(t, J=2.5, \mathrm{H}-\mathrm{C}(1))$; $2.33(d d d, J=13.0,8.0,2.5, \mathrm{H}-\mathrm{C}(10)) ; 1.51(d, J=2.5,2 \mathrm{H}) ; 1.38(d d d, J=13.0,2.5,2.5, \mathrm{H}-\mathrm{C}(10)) ;-0.14$, $-0.18(2 d, J=2.5,2 H) . \mathrm{MS}(70 \mathrm{eV}): 416\left(32, M^{+\cdot}-3 \times 28\right), 238(12), 212(33), 208(40), 179(42), 165(48), 105$ (100).

Crystal Structure of 52. A single crystal of $\mathbf{5 2}$ was obtained by slow recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane at 20°. Single crystal diffraction intensities were collected on a Enraf-Nonius-CAD-4 autodiffractometer. Table 2 gives the crystallographic data and data-collection procedure using the 'X-ray 72 system' of programs [25]. Atomic scattering factors for neutral $\mathrm{C}, \mathrm{O}, \mathrm{Fe}[26]$, and $\mathrm{H}[27]$ and anomalous coefficients for Fe [28] were included in the structure-factor calculations. List of atomic parameters are given in Table 3. Bond lengths and bond angles are summarized in Table 4. A perspective view of the molecular structure of 52 was prepared by the programm ORTEP [29] (Fig. 2). A list of the observed and calculated structure-factor amplitude are available on request from G.C.

Table 2. Crystal Data of 52, Intensity Collection, and Refinement

Formula Molecular mass	$\begin{aligned} & \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FeO}_{5} \\ & 384.219 \end{aligned}$	Radiation	$\begin{aligned} & \text { Mo- } K_{\alpha} \\ & \text { (graphite monochromator) } \end{aligned}$
		$\lambda[\mathrm{nm}]$	7.1069
Crystal system	monoclinic	$\mu\left[\mathrm{cm}^{-1}\right]$	8.57
Space group	$P 2_{1 / c}$	Scan method	$2 \theta-\Theta$
$a[\AA]$	10.385(4)	$(\sin / \lambda)_{\text {max }}$	$0.35 \AA^{-1}$
$b[\AA]$	12.246(6)	No. of unique reflections	1684
$c[\AA]$	14.199(2)	No. of reflections ($I>3 \sigma$)	1382
$\beta\left[{ }^{\circ}\right]$	91.30(2)	No. of reflections vs. no. of variables	5.06
$U\left[\AA^{3}\right]$	1805.3	Resolution method	MULTAN and Fourier [30]
Z	4	Refinement method	weighted block-diagonal least-squares (2 blocks)
$d_{\text {calc }}\left[\mathrm{gcm}^{-3}\right]$	1.414	R	0.026
$d_{\text {obs }}\left[\mathrm{gcm}^{-3}\right]$	1.424	R_{w}	0.023
$F_{\text {ooo }}$	800	Minimized quantity	$\Sigma \omega\left(F_{o}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
		Weight	$1 / \sigma^{2}(\neq)$
		Lattice constants	least-squares of 25 accurately centered reflections

Table 3. Atomic Parametersfor 52. Estimated errors are given in parentheses; numbering of the atoms according to Fig. 2.

Atom	x	y	z	Atom	x	y	z
Fe	$0.15894(6)$	$0.12354(5)$	$0.64208(4)$	$\mathrm{H}(1)$	$0.151(3)$	$-0.012(2)$	$0.491(2)$
$\mathrm{O}(1)$	$0.0009(3)$	$0.2749(3)$	$0.5312(3)$	$\mathrm{H}(2)$	$0.769(2)$	$-0.099(2)$	$0.527(2)$
$\mathrm{O}(2)$	$0.1502(4)$	$0.2090(3)$	$0.8347(3)$	$\mathrm{H}(3)$	$0.359(3)$	$0.270(2)$	$0.657(2)$
$\mathrm{O}(3)$	$-0.0246(3)$	$-0.0457(3)$	$0.6943(3)$	$\mathrm{H}(4)$	$0.321(3)$	$0.229(2)$	$0.544(2)$
$\mathrm{O}(4)$	$0.5403(2)$	$-0.2005(2)$	$0.6391(2)$	$\mathrm{H}(5)$	$0.479(2)$	$0.119(2)$	$0.758(2)$
$\mathrm{O}(5)$	$0.3603(3)$	$-0.1377(2)$	$1.0756(2)$	$\mathrm{H}(6)$	$0.615(3)$	$-0.047(3)$	$0.720(2)$
$\mathrm{C}(1)$	$0.0616(5)$	$0.2156(4)$	$0.5773(4)$	$\mathrm{H}(7)$	$0.596(2)$	$0.037(2)$	$0.633(2)$
$\mathrm{C}(2)$	$0.1537(4)$	$0.1768(4)$	$0.7587(4)$	$\mathrm{H}(8)$	$0.500(3)$	$-0.250(3)$	$0.611(3)$
$\mathrm{C}(3)$	$0.0474(4)$	$0.0205(4)$	$0.6729(3)$	$\mathrm{H}(9)$	$0.497(2)$	$-0.088(2)$	$0.546(2)$
$\mathrm{C}(4)$	$0.2099(4)$	$0.0426(3)$	$0.5168(3)$	$\mathrm{H}(10)$	$0.290(2)$	$-0.154(2)$	$0.595(2)$
$\mathrm{C}(5)$	$0.2965(4)$	$0.0165(3)$	$0.5921(3)$	$\mathrm{H}(11)$	$0.351(2)$	$0.061(2)$	$0.902(2)$
$\mathrm{C}(6)$	$0.3570(3)$	$0.1018(3)$	$0.6424(3)$	$\mathrm{H}(12)$	$0.464(3)$	$-0.031(3)$	$0.919(2)$
$\mathrm{C}(7)$	$0.3304(4)$	$0.2114(3)$	$0.6154(3)$	$\mathrm{H}(13)$	$0.186(2)$	$-0.063(2)$	$0.908(2)$
$\mathrm{C}(8)$	$0.4446(4)$	$0.0599(3)$	$0.7211(3)$	$\mathrm{H}(14)$	$0.383(2)$	$-0.219(2)$	$0.899(2)$
$\mathrm{C}(9)$	$0.5493(4)$	$-0.0076(3)$	$0.6695(3)$	$\mathrm{H}(15)$	$0.236(2)$	$-0.254(2)$	$0.915(2)$
$\mathrm{C}(10)$	$0.4842(4)$	$-0.0988(3)$	$0.6119(2)$	$\mathrm{H}(16)$	$0.288(3)$	$-0.269(2)$	$0.751(2)$
$\mathrm{C}(11)$	$0.3358(3)$	$-0.0956(3)$	$0.6291(2)$	$\mathrm{H}(17)$	$0.166(3)$	$-0.198(2)$	$0.766(2)$
$\mathrm{C}(12)$	$0.3210(3)$	$-0.1037(3)$	$0.7344(3)$	$\mathrm{H}(18)$	$0.211(5)$	$-0.019(4)$	$1.144(3)$
$\mathrm{C}(13)$	$0.3743(4)$	$-0.0219(3)$	$0.7820(3)$	$\mathrm{H}(19)$	$0.164(7)$	$0.031(5)$	$1.056(5)$
$\mathrm{C}(14)$	$0.3707(4)$	$-0.0106(3)$	$0.8869(3)$	$\mathrm{H}(20)$	$0.095(8)$	$-0.085(7)$	$1.093(6)$
$\mathrm{C}(15)$	$0.2695(3)$	$-0.0889(3)$	$0.9270(2)$				
$\mathrm{C}(16)$	$0.2899(3)$	$-0.2021(3)$	$0.8852(3)$				
$\mathrm{C}(17)$	$0.2592(4)$	$-0.2005(3)$	$0.7798(3)$				
$\mathrm{C}(18)$	$0.2791(4)$	$-0.0872(3)$	$1.0328(3)$				
$\mathrm{C}(19)$	$0.1862(9)$	$-0.0161(9)$	$1.0835(6)$				

Table 4. Bond Lengths (\AA) and Bond Angles $\left(^{\circ}\right)$ in 52. Atom numbering according to Fig. 2.

Bond lengths [\AA]			
$\mathrm{Fe}-\mathrm{C}(1)$	$1.760(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	1.562
$\mathrm{Fe}-\mathrm{C}(2)$	$1.782(5)$	$\mathrm{C}(8)-\mathrm{C}(13)$	1.521 (5)
$\mathrm{Fe}-\mathrm{C}(3)$	1.775(5)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.533(5)$
$\mathrm{Fe}-\mathrm{C}(4)$	$2.114(4)$	$\mathrm{C}(10)-\mathrm{O}(4)$	$1.424(5)$
$\mathrm{Fe}-\mathrm{C}(5)$	$2.076(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.566(5)$
$\mathrm{Fe}-\mathrm{C}(6)$	2.074(4)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.509(5)$
$\mathrm{Fe}-\mathrm{C}(7)$	$2.122(4)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.323(5)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.155(6)$	$\mathrm{C}(12)-\mathrm{C}(17)$	$1.501(5)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.151(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.496(5)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.149(6)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.541(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.417(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.525(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.406(5)$	$\mathrm{C}(15)-\mathrm{C}(18)$	$1.504(5)$
$\mathrm{C}(5)-\mathrm{C}(11)$	1.522(5)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.523(5)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.422(5)$	$\mathrm{C}(18)-\mathrm{O}(5)$	$1.200(5)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.514(5)$	$\mathrm{C}(18)-\mathrm{C}(19)$	1.50(1)
Bond angles [${ }^{\circ}$]			
$\mathrm{Fe}-\mathrm{C}(1)-\mathrm{O}(1)$	176.9(5)	$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(9)$	104.2(3)
$\mathrm{Fe}-\mathrm{C}(2)-\mathrm{O}(2)$	178.6(5)	$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(13)$	110.8(3)
$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{O}(3)$	178.9(5)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$	129.0(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	102.8(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	109.4(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$	102.3(2)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	114.1(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$	90.7(2)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	121.8(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(5)$	128.1(2)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	105.4(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(6)$	129.9(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{O}(4)$	108.6(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(7)$	93.2(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	108.8(3)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$	89.8(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	106.0(3)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(4)$	165.2(2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(4)$	112.2(3)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(5)$	125.8(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	114.0(3)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(6)$	95.5(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	122.1(3)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(7)$	91.4(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	124.0(3)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	92.9(2)	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	110.5(3)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(5)$	95.4(2)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	123.8(3)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(6)$	124.1(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.0(3)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(7)$	163.7(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	108.7(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.0(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(18)$	109.3(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(11)$	128.6 (3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$110.1(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.9(3)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{O}(5)$	121.9(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	112.2(3)	$\mathrm{C}(15)-\mathrm{C}(18)-\mathrm{C}(19)$	117.4(4)
$C(5)-C(11)-C(10)$	$103.0(3)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(18)$	113.3(3)
$\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{C}(12)$	111.7(3)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{O}(5)$	120.7(5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$	112.4(3)		

REFERENCES

[1] R. Gabioud, P. Vogel, Helv. Chim. Acta 1983, 66, 1134.
[2] A. J. Pearson, Acc. Chem. Res. 1980, 13, 463; A. Monpert, J. Martelli, R. Gree, R. Carrie, Tetrahedron Lett. 1981, 22, 1961; M. Franck-Neumann, D. Martina, M.P. Heitz, ibid. 1982, 23, 3493; B. R. Bonazza, C.P. Lillya, G. Scholes, Organometallics 1982, 1, 137.
[3] E. O., Fischer, R.D. Fischer, Angew. Chem. 1960, 72, 919; A. J. Birch, A.J. Pearson, J. Chem. Soc., Perkin Trans. 1 1978, 638; A. J. Birch, P. E. Cross, J. Lewis, D. A. White, S. B. Wild, J. Chem. Soc. (A) 1963, 332; H. J. Dauben, D. J. Bertelli, J. Am. Chem. Soc. 1961, 83, 497; M. F. Semmelhack, Pure Appl. Chem. 1981, 53, 2379; M. F. Semmelhack, J. W. Herndon, J. L. Springer, J. Am. Chem. Soc. 1983, 105, 2497; M. F. Semmelhack, J.W. Herndon, J. K. Liu, Organometallics 1983, 2, 1885; R.C. Kerber, J. Organomet. Chem. 1983, 254, 131.
[4] a) D.F. Hunt, C.P. Lillya, M.D. Rausch, J. Am. Chem. Soc. 1968, 980, 2561; J. Wenger, N. H. Thuy, T. Boschi, R. Roulet, A. Chollet, P. Vogel, A. A. Pinkerton, D. Schwarzenbach, J. Organomet. Chem. 1979, 174, 89; b) C. Barras, L. G. Bell, R. Roulet, P. Vogel, Tetrahedron Lett. 1981, 22, 233; Helv. Chim. Acta 1981, 64, 2841 ; c) R. Roulet, E. Tagliaferri, P. Vogel, G. Chapuis, J. Organomet. Chem. 1981, 208, 353; d) A. A. Pinkerton, D. Schwarzenbach, R. Gabioud, P. Vogei, Helv. Chim. Acta 1986, 69, 305.
[5] J.-C. Zwick, P. Vogel, Angew. Chem. Int. Ed. 1985, 24, 787; b) P. Vioget, M. Bonivento, R. Roulet, P. Vogel, Helv. Chim. Acta 1984, 67, 1630; c) J.-C. Zwick, R. Gabioud, P. Vogel, ibid. 1987, 70, 1079.
[6] a) P. Narbel, A. A. Pinkerton, E. Tagliaferri, J. Wenger, R. Roulet, R. Gabioud, P. Vogel, D. Schwarzenbach, J. Organomet. Chem. 1981, 208, 335; b) A. J. Pearson, in 'Metallo-organic Chemistry', J. Wiley \& Son, New York, 1985; c) D. H. R. Barton, H. Patin, J. Chem. Soc., Perkin Trans. 1 1976, 829; M. Franck-Neumann, D. Martina, M. P. Heitz, J. Organomet. Chem. 1986, 301, 61.
[7] U. Hanisch, E. Tagliaferri, R. Roulet, P. Vogel, Helv. Chim. Acta 1983, 66, 2182.
[8] E. J. Corey, C. U. Kim, J. Am. Chem. Soc. 1972, 94, 7586.
[9] A. R. Koray, J. Organomet. Chem. 1983, 243, 191.
[10] W.H. Kruizinga, B. Strijtveen, R. M. Kellog, J. Org. Chem. 1981, 46, 4321; J.M. Huffman, R.C. Desai, Synth. Commun. 1983, 13, 553.
[11] C. L. Liotta, H. P. Harris, M. McDermott, T. Gonzales, K. Smith, Tetrahedron Lett. 1974, 2417.
[12] O. Mitsonobu, Synthesis 1981, 1.
[13] R.P. Volante, Tetrahedron Lett. 1981, 22, 3119.
[14] R. Gabioud, P. Vogel, Tetrahedron Lett. 1983, 24, 1983.
[15] R. Gabioud, P. Vogel, A. A. Pinkerton, D. Schwarzenbach, Helv. Chim. Acta 1986, 69, 271.
[16] E. Tagliaferri, P. Campiche, R. Roulet, R. Gabioud, P. Vogel, G. Chapuis, Helv. Chim. Acta 1985, 68, 126.
[17] F. Fringuelli, F. Pizzo, A. Taticchi, E. Wenkert, J. Org. Chem. 1983, 48, 2802; F. Fringuelli, F. Pizzo, A. Pizzo, A. Taticchi, T.D. J. Halls, E. Wenkert, ibid. 1982, 47, 5056.
[18] P. Yates, P. Eaton, J. Am. Chem. Soc. 1960, 82, 4436; T. Inukai, T. Kojima, J. Org. Chem. 1966, 31, 1121; N. T. Anh, J. Seyden-Penne, Tetrahedron 1973, 29, 3259; K. N. Houk, R. W. Strozier, J. Am. Chem. Soc. 1973, 95, 4094; P. V. Alston, R. M. Ottenbrite, J. Org. Chem. 1975, 40, 1111.
[19] K. Alder, G. Stein, Justus Liebigs Ann. Chem. 1933, 504, 22; ibid. 1934, 514, 1; R. B. Woodward, T. J. Katz, Tetrahedron 1959, 5, 70; T. Inukai, T. Kojima, J. Org. Chem. 1966, 31, 2032.
[20] M. Avenati, P.-A. Carrupt, D. Quarroz, P. Vogel, Helv. Chim. Acta 1982, 65, 188.
[21] P.-A. Carrupt, F. Berchier, P. Vogel, Helv. Chim. Acta 1985, 68, 1716.
[22] K. Naruyama, Y. Ishihara, Y. Yamamoto, Tetrahedron Lett. 1981, 22, 4235; see also: T. Takebayaski, N. Iwasawa, T. Mukaiyama, T. Hata, Bull. Chem. Soc. Jpn. 1983, 56, 1669; B. B. Snider, G. B. Philipps, J. Am. Chem. Soc. 1982, 104, 1113; W. Oppolzer, C. Chapuis, G. Bernardinelli, Helv. Chim. Acta 1984, 67, 1397.
[23] J.-M. Tornare, P. Vogel, Helv. Chim. Acta 1985, 68, 1069.
[24] J.-L. Métral, J. Lauterwein, P. Vogel, Helv. Chim. Acta 1986, 69, 1287; K. A. Black, P. Vogel, J. Org. Chem. 1986, 51, 5341.
[25] J. M. Stewart, I. A. Kundell, J. C. Baldwin, X-RAY 72, version of June 1972, Technical Report TR-192 of the Computing Science Center, University of Maryland (as modified by D. Schwarzenbach).
[26] D. T. Cromer, J. B. Mann, Acta Crystallogr., Sect. A 1968, 24, 321.
[27] R.F. Stewart, E. R. Davidson, W.T. Simpson, J. Phys. Chem. 1965, 42, 3175.
[28] International Tables of Crystallography, The Kynoch Press, Birmingham, 1974, p. 149.
[29] C. K. Johnson, ORNL-3794, Oak Ridge National Laboratory, 1971.
[30] P. Main, S.J. Fiske, S. E. Hull, J.-P. Declercq, G. Germain, M. M. Woolfson, MULTAN-a System of Computer Programs for the Automatic Solution of Crystal Structures, 1980.

[^0]: ${ }^{1}$) Part of the Ph.D. thesis of J.-C. Zwick, Ecole Polytechnique Fédérale de Lausanne, 1987. Part of this work has been presented at the fall meeeting of the Swiss Chemical Society in Bern, Oct. 10, 1986.
 ${ }^{2}$) Present address: Firmenich SA, CH-1249 La Plaine.

[^1]: Attempts to invert the configuration at $\mathrm{C}(2)$ in 3 via $S_{\mathrm{N}} 2$-displacement reactions of the corresponding tosylate or mesylate failed using cesium carboxylates [10] or potassium carboxylates and [18]crown-6 [11]. Under these conditions, only products of decomposition were obtained. The Mitsunobu's [12] technique applied to alcohol 3 (the modification of Volante [13] was used to avoid cycloaddition of the diene to diethyl azodicarboxylate) did not

[^2]: a) At 80° in anh. $\mathrm{C}_{6} \mathrm{H}_{6}$
 ${ }^{\text {b }}$) Prepared by decomposition of 3-methoxyanthranilic acid with isopentyl nitrite in anh. dioxane at 70°,
 Yield of crude adduct mixtures containing some aromatized derivatives.
 As given by $360-\mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the aromatized adducts; these product ratios do not differ from those observed before aromatization with DDQ.
 IUPAC numbering shown for $\mathrm{R}=\mathrm{H}$; IUPAC numbering for $\mathrm{R}=\mathrm{T}$ s or PhCO , see Exper. Part.
 ${ }^{f}$) Proportions in the crude reaction mixture as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

[^3]: ${ }^{3}$) Distinction between structures $\mathbf{5 0}$ and $\mathbf{5 1}$ as well as between $\mathbf{5 4}$ and $\mathbf{5 5}$ is arbitrary, see Exper. Part.

